
International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 25

Performance Optimization of Parallel Programming

Athira Anil K. E.
 #1

, N. Arivazhagan*
2

1Dept. of Information Technology, SRM University, Chennai, India.

athiraanilke@gmail.com
2Assistant Professor, Dept. of Information Technology, SRM University, Chennai, India.

arivazhagan.n@ktr.srmuniv.ac.in

Abstract— A well organized parallel application can

accomplish better performance over sequential execution

on existing and forthcoming parallel PC architecture. This

paper depicts the issues that can limit the performance of

parallel programs that restricts them from providing the

expected performance improvement compared to

sequential programming, test assessment of certain parallel

application with sequential programs. Before depicting the

exploratory assessment, this paper depicts a few systems

pertinent of parallel programming. The assessment of

parallel applications has been carried out by exploratory

result assessment and execution estimations. Proper

utilization of all available cores and resources, in addition

to allocating balanced amount of load among all computing

units, can lead to improved performance.

Keywords— Multi-core, Multithreading, OpenMP,

Parallel Programming, Performance Analysis, Processor

Architecture.

1. Introduction

Parallel processing is a way of dividing a large complex

task among multiple processing units which operates

simultaneously for achieving a common goal. The main

purpose of parallelism is to decrease the execution time by

maximum uses of CPU resources. Large instructions

are decomposed into different parts and different smaller

parts are distributed to different processors to be performed

simultaneously. Its increases efficiency, speed

and performance. Immense performance gain has been

accomplished by doing operations in parallel. Speed up

realization for speedier execution of a program requires

essentially three aspects:

 Algorithm must include numerous independent

operations

 Programming language must permit parallel operation

specification and automatic recognition

 Hardware should have such an architecture which is

capable of executing different operations at the same

time.

Program must coordinate the needs of algorithm with the

abilities of basic hardware. Execution of parallel

application can be accomplished utilizing Multi-core

innovation. The element spurred the outline of parallel

calculation for multi-core framework is the performance.

The performance of parallel algorithm is sensitive to

number of cores available to the framework, core to core

latencies, memory design, and synchronization costs.

2. Methodology

The sequential execution model is bad and wasteful in

multi-core environment, while the normal parallel

processing may be suitable. A standout amongst the most

imperative numerical issues is solution of system of linear

equations. Multi-core advancements backings

multithreading to executing numerous threads in parallel

and consequently the execution of the applications can be

made improved. To accomplish the high performance in

the application, we have to build up the right parallel

algorithm, needs the hardware and the programming

language like OpenMP. The OpenMP has the backing of

multithreading. The system can be created so that all the

processor can be occupied to enhance the performance.

Architectural advancements can enhance the measure of

work performed per instruction. Technological

enhancements can diminish the time obliged per instruction

cycle. Numerous algorithms with inherent parallelism have

computational intricacy than sequential. Algorithms

suitable for single processors may not be useful for multi-

processors. Really rebuilding of operation must be carried

out to uncover the hidden parallelism. Hardware supported

multithreading is one of the most adaptable procedure to

hide latency, as it doesn't require any special software

analysis and support. Besides, as it can be invoked

dynamically it can deal with eccentric circumstances.

Parallel programming supports fine grained parallelism.

Every parallel programming contains a parallel section

and a serial section. Serial sections limit the parallel

effectiveness. If there exists lot of serial computations in

your program then there won’t be good speed up in your

program. Serial work doesn’t allow perfect speedup. This

is well explained by Amdahl’s law. Amdahl’s law is very

essential rule for establishing theoretical basis for

achieving maximum speed up of a parallel program.

Amdahl’s law places a strict limit on the speed up that

can be understandable by using multiprocessors. The

Amdahl’s law states that a small portion of the program

which can’t be parallelized will limit the overall speedup

available from parallelization. Amdahl’s Law can be

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 26

shortly expressed by using the following equation, where fs

is the serial fraction of code, fp is the parallel fraction of

code, N is the number of processors:

Effect of multiple processors on runtime

Effect of multiple processors on speedup

From the above speedup equation we can see that, the

maximum potential speedup for a parallel program depends

on how much a program can be parallelized.

 Representation of Amdahl’s law:

Fig. 1: Representation of Amdahl’s law

But, in reality the expected result is not obtained

because of degradation in performance due to various

factors. The most important performance degradation

contributor is communication.

Fig.2: Reality of Amdahl’s law

Various factors can limit the performance of parallel

programs:

 Serial time can dominate

 Poor Single Processor Performance

 Typically due to Memory Performance.

 Parallel Overhead

 Synchronization and Communication overhead

 Improper load balancing

 Differing Amounts of Work Assigned to Processors

 Different Speed of Processor

 Managing complex data dependency is Non-Trivial

 Managing data access conflicts without full access

control

 Managing multiple core executions driving one insane

 Lack of Parallel library for general use

 Interacting With Hardware

 Legacy software is often used as the entry point to

parallelization

Solutions for Load Imbalance

 Better Initial Assignment of Tasks

 Dynamic Load Balancing of Tasks

We need to consider whether the CPU requirements

will justify parallelization to be done. Moreover check

whether the code is to be used just once or more. This is

necessary because parallel programming has a steep

learning curve and is effort-intensive. Parallel computing

environments are unstable and unpredictable. They don’t

even respond to the serial debugging and tuning techniques.

Moreover, they may not yield a result you expect in spite

of the large amount of time you invest on them.

3. Experimental Result Evaluation &

Performance

Performance is the primary concern on parallel

programs. In parallel applications, we expect the better

performance than the traditional sequential programming.

In general sense the expected performance depends on the

available computer architecture.

3.1 System of linear equations

Number of

Equations (n)

Execution time

of sequential (in

seconds)

Execution time of

parallel (in seconds)

1000 3 3

2000 22 27

3000 85.999 65.528

4000 211 152.0882

Table 1: Tabulation of Performance Calculation of Linear Equations

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 27

Fig. 3: Performance graph

 Though in most cases we can see parallel execution in

producing very less execution time compared to parallel, in

when number equations were 2000 serial execution was

faster than parallel which is contradictory to our

assumption. This indicates the chances of exceptional

behaviour at times which is unappreciable.

3.2 Image Convolutions

 The equation for image convolution is given by

 Where, In is the input image, Mask is the convolution

mask, and Out is the output image. The dimension of the

image is M x N

 The convolution algorithm will generate results that are

greater than the range of original values of the input image.

For this, scaling operation is performed to restore the result

to same gray level range of original picture.

Table 2: Time elapsed in image convolution

Fig. 4: Image convolution

 Performance of OpenMP is better compared to the

OpenCL, as evident from the figure. The speed-up

achieved is (Seq/MP) = 0.51/0.05 = 10.2 whereas no speed-

up is achieved w.r.t OpenCL as (Seq/CL) = 0.05/0.96 =

0.53. As a result, OpenMP is much faster compared to

OpenCL, as OpenCL is busy in doing background of kernel

creation and other things, than actual execution. The actual

GPU device execution time can be found by profiling [14]

the gpu device which will be very less as compared to

OpenMP.

3.2 String Reversal

 For the comparison purpose, we have taken a string

reversal problem. We have considered a huge file in mega-

bytes and tried to reverse it using OpenCL.

Fig.5: String Reversal performance comparison graph

File Size Sequential OpenCL

50 MB 0.22 1.23

94MB 0.44 1.68

155MB 0.58 1.64

216MB 0.91 1.76

Table 3: Tabulation of string Reversal

 String reversal problem is straight forward. Just read

the entire file and start copying values from end of the file.

As there are no dependencies in this operation, we have not

considered OpenMP Programming model. Even if we take

OpenMP into consideration, performance will be same as

reversing of read string falls in critical section. From

Figure and Table, it can be concluded that, OpenCL

Programming model is not suitable for this kind of

applications.

All these test analysis proves that performance of

parallel programs largely depend on the problem and the

underlying architecture. Diverse machine architectures

require different algorithms for productive resource use and

operation. The type of parallelism relies upon the kind of

architecture. Henceforth new parallel algorithms have to be

designed. It is convenient to consider the parallelism in the

Program Sequential OpenMP OpenCL

Time (in

Sec)
0.51 0.05 0.96

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 28

algorithm instead of finding diverse parallel programs for

different architectures. Pipelining and information

parallelism are the two imperative procedures that

assistance to enhance concurrency.

4. Discussion

As indicated by a few analysis, parallelism shows better

performance over conventional sequential execution. In

any cases sometimes the parallel loops meets expectations

slower then sequential execution. In parallel execution

there is so much unpredictability than in sequential.

Alongside the accomplishment of great execution there are

some terrible encounters also. Some of the issues occurred

that if properly taken care to enhance the execution of

parallel applications are:

4.1 Inappropriate employments of threading

Creating, pulverizing and scheduling between threads

are cost variable. Threading utilize the CPU resources. Due

to inappropriate usage, at some point, multithreading will

not show the better execution. In the event where there is

substantial I/O holding up then numerous worker thread

can't work all the while.

4.2 Over utilization of threads

Over utilization of threads over CPU resources can

sometimes ease off the execution. The profits of

parallelization rely on the number of processors.

4.3 Unbalanced workload

Suppose the framework has enough parallel power, but

total number of data or work is not all that high then each

CPU won't have such a great amount of work to do. For

vast workload the time of synchronization between threads

is unimportant. However for small amount of data the

synchronization expense of CPU can be so costly

(moderately) than the primary execution. So the

performance may be down.

4.3 Proper CPU utilize and working framework reliance

At long last, our applications on a working framework

are not ready to 100% utilization of the CPU assets. It is

the operating system which is capable of scheduling

distinctive current threads in a framework. At the point

when our program makes a few threads for execution in the

meantime there may be some different threads in line of

operating system. So it is calm difficult to captivate the

CPU asset 100%.

Hypothetically the velocity up of execution in parallel

ought to be linear. But all things considered we don't get it.

Above talked about issues and other minor issues we don't

get the pace up as direct. It is essential to perceive that the

overhead from a given number of threads is an impression

of the effectiveness with which threading has been applied

to the given software (however it can never be equivalent

to zero). When threading has been brought into the

application, the tuning methodology must recognize

bottlenecks that speak to threading overhead.

Most components of threading overhead fall into the

following classifications:

Thread creation/destructin: Thread pooling (making

reusable threads) reduces the need to make and resign

worker threads.

Synchronization and lock administration: Threads lock

the critical section of the code to shield data they are

utilizing from being overwritten by different threads in a

manner that could create unexpected results. Lock forces

threads to hold on for one another to release the lock in

order to access the critical section of the code.

Load imbalance: Consider the compelling situation

where an application generates two threads and one

performs substantial computation, while the other just

composes the results of that processing to the screen. The

second thread would be idle a great part of the time,

diminishing the application's general productivity. Such

issues, which are often very subtle, are critical factors in

threaded application tuning.

As the quantity of processor cores accessible to the

workload expands, so should the quantity of threads. More

number of threads can build the unpredictability and

complexity effects of each of the above overheads, which

in turn brings down the effectiveness of the general code

on an every core premise. This impact is integral for

programming designers to incorporate great threading

practices into their products for the anticipated increments

in the quantity of cores per processor.

5. Conclusion

Put in the context of real-world contemplations about

the overheads connected with programming multi-

threading, they enlighten the potential outcomes that multi-

core hardware bears individual applications that have been

appropriately parallelized. The performance of parallel

algorithm is sensitive to number of cores available to the

framework, core to core latencies, memory design, and

synchronization costs. The software development tools

must conceptual these varieties so that the software

performance keeps on gaining the profits of the Moore's

law. Best practices and instruments from various renowned

computer hardware design vendors are a key method for

empowering designers to fabricate robust and adaptable

threading into their applications. Various software

development products are planned on account of threading,

including libraries of pre-threaded capacities that lighten

programming troubles, and in addition apparatuses that

help engineers recognize threading errors and execution

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 29

issues, accelerating the advancement process and

expanding the nature of threaded applications.

It is an awesome test for us to beat the issue of parallel

computing making proficient parallel applications in

multiprocessor environment and tackle those world

complex issues in an extremely effective manner.

Performance is a principle issue of parallel applications.

The learning of proper partitioning, staying away from over

utilization, legitimate load balancing, proper memory

sharing and so on makes your parallel application

execution high. In this paper we have attempted to quantify

the execution of parallel applications with distinctive

parallelism criteria. On the premise of our exploratory

result we have examined some imperative execution issues

also. So we surmise that our Paper will be useful for the

educated community as well as experts for further research

or making huge parallel applications in a commonsense

field. This Paper work will help as an establishment for

further research for tackling the forthcoming complex

issues on the planet.

Acknowledgement

This experimental paper work is developed as a result

of full support and assistance of my guide Assistant

Professor (Sr.G) N. Arivazhagan of SRM University. I

express my sincere gratitude to him for his guidance. I also

thank God Almighty, my family, other instructors for

giving me support for doing the work.

References

[1] Posix threads programming. https://computing.
llnl.gov/tutorials/pthreads.

[2] [2] G. J. Barbara Chapman and R. van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT Press,

2007.

[3] [3] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of

multithreaded programs using hardware event-based prediction. In

ICS, pages 157–166, 2006.
[4] [4] M. Frigo, C. E. Leiserson, and K. H. Randall. The

implementation of the Cilk-5 multithreaded language. In PLDI,

pages 212–223, 1998.
[5] [5] J. Lee, H.Wu, M. Ravichandran, and N. Clark. Thread tailor:

Dynamically weaving threads together for efficient, adaptive

parallel applications.
[6] [6] Girbal, S., N. Vasilache, C. Bastoul, A. Cohen, D. Parello,M.

Sigler, and O. Temam (2006). Semi-automatic composition of loop

transformations for deep parallelismand memory hierarchies.
International Journal of Parallel Programming, 34, 261–317.

[7] https://computing.llnl.gov/tutorials/parallel_comp/

[8] https://www2.cisl.ucar.edu/docs/parallel_concepts
[9] https://computing.llnl.gov/tutorials/openMP/

Athira Anil K.E., currently pursuing MTech

in Department of Information Technology from
SRM University, Chennai. I hold a Bachelor

Degree in Information Technology from KMCT

College of Engineering (Under Calicut
University).

N.Arivazhagan is Asst.Professor of

Department of information technology, SRM

University, Kattankulathur. He has been serving
more than 25 years of teaching and 1 year

industry experience. He is doing research in

Content Based Image Retrieval. He holds a M.S
Degree from Birla Institute of Technology,

Pilani and M.B.A from Madurai Kamaraj

University.

