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Abstract— Traveling is a part of every person’s day-to-

day life. With the massive and complicated road network 

of a modern city or country, finding a good route to travel 

from one place to another is not a simple task. The 

knowledge of the actual current state of the road traffic and 

its short-term and dynamic path evolution for the entire 

road network is a basic component of ATIS (Advanced 

Traveler Information Systems) and ATMS Advanced 

Traffic Management System) applications. In this view the 

use of real-time Taxi Data (TD), based on traces of GPS 

positions to gather accurate travel times/speeds in a road 

network and to improve short-term predictions of travel 

conditions. 

GPS-equipped taxis can be regarded as traffic flows on 

road surfaces, and taxi drivers are usually experienced in 

finding the fastest (quickest) route to a destination based on 

their knowledge. We mine smart driving directions from 

the historical GPS trajectories of a large number of taxis, 

and provide a user with the practically fastest route to a 

given destination at a given departure time. In our approach, 

we propose a time-dependent landmark graph, where a 

node (landmark) is a road segment frequently traversed by 

taxis, to model the intelligence of taxi drivers and the 

properties of dynamic road networks. The essential 

components that will be discussed are a Web-services-

based data collection approach then, a Variance-Entropy-

Based Clustering approach is devised to estimate the 

distribution of travel time between two landmarks in 

different time slots. Based on this graph, we design a two-

stage routing algorithm to compute the practically fastest 

route. In our existing system static (Dynamic)-path and not 

update the rout. 

 

Keywords— Data mining, Spatial databases, Driving 

directions, time-dependent fast route, taxi trajectories,   T-

Drive, landmark graph  

1. Introduction 

Finding efficient driving directions has become a daily 

activity and been implemented as a key feature in many 

map services like Google and Bing Maps. A fast driving 

route saves not only the time of a driver but also energy 

consumption (as most gas is wasted in traffic jams). In 

practice, big cities with serious traffic problems usually 

have a large number of taxis traversing on road surfaces. 

These taxis have already been embedded with a GPS 

sensor, which enables a taxi to report on its present location 

to a data center in a certain frequency. Thus, a large 

number of time-stamped GPS trajectories of taxis have 

been accumulated and are easy to obtain. Intuitively, taxi 

drivers are experienced drivers who can usually find out 

the fastest route to send passengers to a destination based 

on their knowledge (we believe most taxi drivers are honest 

although a few of them might give passengers a roundabout 

trip). When selecting driving directions, besides the 

distance of a route, they also consider other factors, such as 

the time-variant traffic flows on road surfaces, traffic 

signals and direction changes contained in a route, as well 

as the probability of accidents. These factors can be learned 

by experienced drivers but are too subtle and difficult to 

incorporate into existing routing engines.  

 

 
Fig. 1: A cloud-based driving directions service 

 

Therefore, these historical taxi trajectories, which imply 

the intelligence of experienced drivers, provide us with a 

valuable resource to learn practically fast driving directions. 

We propose to mine smart driving directions from a large 

number of real-world historical GPS trajectories of taxis. 
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As shown in Figure 1, taxi trajectories are aggregated and 

mined in the Cloud to answer queries from ordinary drivers 

or Internet users. Given a start point and destination, our 

method can suggest the practically fastest route to a user 

according to his/her departure time and based on the 

intelligence mined from the historical taxi trajectories. As 

the taxi trajectories are constantly updated in the Cloud, the 

suggested routes are state-of-the-art. When proposing the 

above-mentioned strategy, two major concerns come to 

people’s minds.  

First, some routes on which a taxi can quickly traverse 

might not be feasible for normal drivers, e.g., the carpool 

tracks in some highways and a few bus-taxi-preserved 

tracks in a city. But, in most cases, especially in many 

urban cities like New York and Beijing, private cars can 

share the same tracks with taxis. That is, taxis’ trajectories 

can still be referenced by other drivers when finding 

driving directions in an urban city.  

Second, the historical trajectory-based approach might 

not be agile enough to handle some urgent accidents in 

contrast to real-time traffic analysis. The traffic flows of a 

city follow some patterns unless some emergent events 

happen, such as serious accidents, traffic control and road-

works. Given that the probability of these events is much 

lower than that of regular traffic patterns, our method is 

still very useful in most situations. 

At the same time, besides the traffic flow, our method 

also implicitly incorporates additional factors, such as 

direction changes and traffic signals. Moreover this method 

can find the fastest route in a future time and needs less 

online communication for data transition. Thus, our 

solution and the real-time-based approach can complement 

each other. We need to face the following three challenges. 

1.1. Intelligence Modelling 

As a user can select any place as a source or destination, 

there would be no taxi trajectory exactly passing the query 

points. That is, we cannot answer user queries by directly 

mining trajectory patterns from the data. Therefore, how to 

model taxi drivers’ intelligence that can answer a variety of 

queries is a challenge. 

1.2. Data Sparseness and Coverage 

We cannot guarantee there are sufficient taxis 

traversing on each road segment even if we have a large 

number of taxis. That is, we cannot accurately estimate the 

speed pattern of each road segment.  

1.3. Low-sampling-rate Problem 

To save energy and communication loads, taxis usually 

report on their locations in a very low frequency, like 2-5 

minutes per point. This increases the uncertainty of the 

routes traversed by a taxi. As shown in Figure 2, there 

could exist four possible routes (𝑅1-𝑅4) traversing the 

sampling points 𝑎 and 𝑏. 

 

 
Fig. 2: Low-sampling-rate problem 

 

 In our approach, we model a large number of historical 

taxi trajectories with a time-dependent landmark graph, in 

which a node (landmark) represents a road segment 

frequently traversed by taxis. Based on this landmark graph, 

we perform a two-stage routing algorithm that first 

searches the landmark graph for a rough route (represented 

by a sequence of landmarks) and then finds a refined route 

sequentially connecting these landmarks. 

2. System Overview 

 

 

The architecture of our system consists of three major 

components: 

 Trajectory Preprocessing, 

 Landmark Graph Construction 

 Route Computing 

The first two components operate offline and the third 

is running online. The offline parts only need to be 

performed once unless the trajectory archive is updated. 

Fig. 3: Architecture overview 
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3. Trajectory Preprocessing 

3.1 Trajectory segmentation 

In practice, a GPS log may record a taxi’s movement of 

several days, in which the taxi could send multiple 

passengers to a variety of destinations. Therefore, we 

partition a GPS log into some taxi trajectories representing 

individual trips according to the taximeter’s transaction 

records. There is a tag associated with a taxi’s reporting 

when the taximeter is turn on or off, i.e., a passenger gets 

in or out of the taxi. 

3.2 Map matching 

To map-match each GPS point of a trip to the 

corresponding road segment where the point was recorded. 

As a result, a taxi trajectory is converted to a sequence of 

road segments. 

3.3 Landmark Graph Construction 

We separate the weekday trajectories from the weekend 

ones, and build a landmark graph for weekdays and 

weekends respectively. When building the graph, we first 

select the top-𝑘 road segments with relatively more 

projections (i.e., being frequently traversed by taxis) as the 

landmarks. Then, we connect two landmarks with a 

landmark edge if there are a certain number of trajectories 

passing these two landmarks. Later, we estimate the 

distribution of travel time of each landmark edge by using 

the VE-clustering algorithm. Now, a time-dependent 

landmark graph is ready for online computation. 

3.4 Route Computing 

Given a query (𝑞𝑠, 𝑞𝑑, 𝑡𝑑), we carry out a two-stage 

routing algorithm to find out the fastest route. In the first 

stage, we perform a rough routing that searches the time-

dependent landmark graph for the fastest rough route 

represented by a sequence of landmarks. In the second 

stage, we conduct a refined routing algorithm, which 

computes a detailed route in the real road network to 

sequentially connect the landmarks in the rough route. 

4. Problem Definition 

4.1 Road Segment 

A road segment 𝑟 is a directed (one-way or 

bidirectional) edge that is associated with a direction 

symbol (𝑟.𝑑𝑖𝑟), two terminal points (𝑟.𝑠, 𝑟.𝑒), and a list of 

intermediate points describing the segment using a polyline. 

If 𝑟.𝑑𝑖𝑟=one-way, 𝑟 can only be traveled from 𝑟.𝑠 to 𝑟.𝑒, 

otherwise, people can start from both terminal points, i.e., 

𝑟.𝑠 → 𝑟.𝑒 or 𝑟.𝑒 → 𝑟.𝑠. Each road segment has a length 

𝑟.𝑙𝑒𝑛𝑔𝑡 and a speed constraint 𝑟.𝑠𝑝𝑒𝑒𝑑, which is the 

maximum speed allowed on this road segment. 

4.2 Dynamic Road Network 

A dynamic road network 𝐺𝑟 is a directed graph, 𝐺𝑟 = 

(𝑉𝑟,), where 𝑉𝑟 is a set of nodes representing the terminal 

points of road segments, and 𝐸𝑟 is a set of edges denoting 

road segments. The time needed for traversing an edge is 

dynamic at least in the following two aspects:  

4.2.1 Time-dependent 

Typically, the traffic flow on a road surface varies over 

days of the week and time of day, e.g., a road could 

become crowded in rush hours while be quite smooth at 

other times. 

 

4.2.2 Location-variant 

 

Different roads have different time-variant traffic 

patterns. For instance, some streets could still be very fast 

even in the morning rush. However, the rush hours of a few 

roads may last for a whole day. 

4.3 Route 

A route R is a set of connected road segments, i.e.,  : 𝑟1 

→ 𝑟2 → ⋅ ⋅ ⋅ → 𝑟𝑛, where 𝑟𝑘+1.s = 𝑟𝑘.𝑒, (1 ≤ 𝑘 < 𝑛). The 

start point and end point of a route can be represented as 

𝑅.𝑠 = 𝑟1.𝑠 and 𝑅.𝑒 = 𝑟𝑛.𝑒. 

4.4 Taxi Trajectory 

A taxi trajectory 𝑇𝑟 is a sequence of GPS points 

pertaining to one trip. Each point 𝑝 consists of a longitude, 

latitude and a time stamp 𝑝.𝑡, i.e., T : 𝑝1 → 𝑝2 → ⋅ ⋅ ⋅ → 𝑝𝑛, 
where 0 < 𝑝𝑖+1.𝑡 − 𝑝𝑖.𝑡 < △𝑇 (1 ≤ 𝑖 < 𝑛). △𝑇 defines the 

maximum sampling interval between two consecutive GPS 

points. 

4.5 Landmark 

A landmark is one of the top-𝑘 road segments that are 

frequently traversed by taxi drivers according to the 

trajectory archive. 

4.6 Transition 

Given a trajectory archive A, a time threshold t𝑚𝑎𝑥, two 

landmarks u, v, arriving time t𝑎,leaving time t𝑙, we say S = 

(u, v; t𝑎, t𝑙) is a transition if the following conditions are 

satisfied: (1) There exists a trajectory T𝑟 = (p1, p2, . . . , p𝑛) 

∈ A, after map matching, T𝑟 is mapped to a road segment 
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sequence (r1, r2 . . . , r𝑛). ∃ i, j, 1 ≤ i < j ≤ n s.t. u = r𝑖, v = 

r𝑗 .(2) r𝑖+1, r𝑖+2, . . . , r𝑗−1 are not landmarks.(3) t𝑎 = p𝑖.t, t𝑙 = 

p𝑗.t and the travel time of this transition is t𝑙 − t𝑎 ≤ t𝑚𝑎𝑥. 

4.7 Candidate Edge and Frequency 

Given two landmarks 𝑢, 𝑣 and the trajectory archive 𝐴, 

let 𝑆𝑢𝑣 be the set of the transitions connecting (𝑢, 𝑣). If 𝑆uv 

≠ ∅, we say 𝑒 = (𝑢, 𝑣; T𝑢𝑣) is a candidate edge, where  

T𝑢𝑣 = {(𝑡𝑎, 𝑡𝑙)∣(𝑢, 𝑣; 𝑡𝑎, 𝑡𝑙) ∈ 𝑆𝑢𝑣} records all the historical 

arriving and leaving times. The support of 𝑒, denoted as 

𝑒.𝑠𝑢𝑝𝑝, is the number of transitions connecting (𝑢, 𝑣), i.e., 

∣𝑆𝑢𝑣∣. The frequency of 𝑒 is .𝑠𝑢𝑝𝑝/T, denoted as 𝑒.𝑓𝑟𝑒𝑞, 

where 𝜏 represents the total duration of trajectories in 

archive 𝐴. 

4.8 Landmark Edge 

Given a candidate edge 𝑒 and a minimum frequency 

threshold 𝛿, we say 𝑒 is a landmark edge if 𝑒.𝑓𝑟𝑒𝑞 ≥ 𝛿. 

4.9 Landmark Graph 

A landmark graph 𝐺𝑙 = (𝑉𝑙,) is a directed graph that 

consists of a set of landmarks 𝑉𝑙 (conditioned by 𝑘) and a 

set of landmark edges 𝐸 conditioned by 𝛿 and𝑡𝑚𝑎𝑥. 

4.10  Optimism Index 

The optimism index α indicates how fast a person 

would like to drive as compared to taxi drivers. The higher 

rank (position in taxi drivers), the faster the person would 

like to drive. 

4.11  Problem Definition 

Given a user query with a start point 𝑞𝑠, a destination 𝑞𝑑 
and a departure time 𝑡𝑑, find the fastest route 𝑅 in a 

dynamic road network 𝐺𝑟 = (𝑉𝑟,𝐸𝑟) which is learned from a 

trajectory archive 𝐴. 

5. Time-Dependent Landmark Graph 

The TDLG is we use “landmark” to model the taxi-

drivers’ intelligence is that: 1) The notion of landmarks 

follows the natural thinking pattern of people, and can give 

users a more understandable and memorable presentation 

of driving directions beyond detailed descriptions. For 

instance, the typical pattern that people introduce a route to 

a driver is like this “take I-405 South at NE 4th Street, then 

change to I-90 at exit 11, and finally exit at Q west Field”. 

Instead of giving turn-by-turn directions, which a driver 

cannot remember, people prefer to use a few landmarks 

(like NE 4th Street) that highlight key directions to the 

destination.2.The sparseness and low-sampling-rate of the 

taxi trajectories do not support the speed estimation for 

each road segment while we can estimate the traveling time 

between two landmarks. Meanwhile, the low-sampling-rate 

trajectories cannot offer sufficient information for inferring 

the exact route traversed by a taxi (refer to Figure 2). Thus, 

we can only use a road segment instead of their terminal 

points as a landmark. Here, we detect the top-𝑘 road 

segments as the landmarks instead of setting up a fixed 

threshold, since a threshold will vary in the scale of taxi 

trajectories. 

 

5.1 Variance-Entropy-Based Clustering 

VE-Clustering algorithm, which is a two-phase 

clustering method, to learn different time partitions for 

different landmark edges based on the taxi-trajectories. 

Given a landmark edge 𝑒 = (𝑢, 𝑣; T𝑢𝑣), our goal is to 

estimate the travel time from 𝑢 to 𝑣 based on T𝑢𝑣 (𝑇𝑢𝑣 is the 

collection of (𝑡𝑎, 𝑡𝑙) pairs of 𝑒 defined in Definition). The 

travel time of the transitions pertaining to a real landmark 

edge in a two dimensional space, where the 𝑥 and 𝑦 axes 

denote the arriving time (𝑡𝑎) and travel time (𝑡𝑙 − 𝑡𝑎) 
respectively (where 𝑥𝑖=𝑡𝑎, 𝑦𝑖=𝑡𝑙−𝑡𝑎). As the number of 

clusters and the boundary of these clusters vary in different 

landmark edges. 

5.2 V-Clustering 

We cluster the travel times of transitions pertaining to a 

landmark edge into several categories based on the 

variance of these transitions’ travel times. We first sort T𝑢𝑣 

according to the values of travel time (𝑡𝑙 − 𝑡𝑎), and then 

partition the sorted list 𝐿 into several sub-lists in a binary-

recursive way. In each iteration, we first compute the 

variance of all the travel times in 𝐿. Later, we find the 

“best” split point having the minimal weighted average 

variance (WAV) defined as Equation 1: 
 

 

Fig. 4: Hierarchical architecture 
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Where 𝐿1(𝑖) and 𝐿2(𝑖) are two sub-lists of 𝐿 split at the 𝑖th 
element and Var represents the variance. This best split 

point leads to a maximum decrease of Equation 2: 

△𝑉 (𝑖) = Var(𝐿) −WAV(𝑖;𝐿) 

The algorithm terminates when max{△𝑉 (𝑖)} is less than a 

threshold. As a result, we can find out a set of split points 

dividing the whole list 𝐿 into several clusters 𝐶 = {𝑐1, 

𝑐2, . . . , 𝑐𝑚}, each of which represents a category of travel 

times. the travel times of the landmark edges have been 

clustered into three categories plotted in different colors 

and symbols. 

5.3 E-Clustering 

This step aims to split the x-axis into several time slots 

such that the travel times have a relatively stable 

distribution in each slot. After V-Clustering, we can 

represent each travel time 𝑦𝑖 with the category it pertains to 

((𝑦𝑖)), and then sort the pair collection 𝑆𝑥𝑐 ={(𝑥𝑖, 𝑐(𝑦𝑖))}𝑛𝑖=1 

according to 𝑥𝑖 (arriving time). The information entropy of 

the collection 𝑆𝑥𝑐 is given by: 

 
where 𝑝𝑖 is the proportion of a category 𝑐𝑖 in the collection. 

The E-Clustering algorithm runs in a similar way to the V-

Clustering to iteratively find out a set of split points. The 

only difference between them is that, instead of the WAV, 

we use the weighted average entropy of 𝑆𝑥𝑐 defined as: 
 

 
 

In the E-Clustering, where 𝑆1
𝑥𝑐 

and 𝑆2
𝑥𝑐 are two subsets 

of 𝑆𝑥𝑐 when split at the 𝑖th pair. The best split point induces 

a maximum information gain which is given by 

△(𝑖) = Ent(𝑆𝑥𝑐) −WAE(𝑖; 𝑆𝑥𝑐) 

We can compute the distribution of the travel times in 

each time slot after the E-Clustering process. 

5.4 Route computing 

The traffic condition of a road, the travel time of a route 

also depends on drivers. Sometimes, different drivers take 

different amounts of time to traverse the same route at the 

same time slot. For example, people familiar with a route 

can usually pass the route faster than a new-comer. Also, 

even on the same path, cautious people will likely drive 

relatively slower than those preferring to drive very fast 

and aggressively. To catch the above factor caused by 

individual drivers, we define the optimism index α.For 

example, α = 0.9 means a person usually drives as fast as 

the top 10% (i.e., 1-0.9) fast- driving taxi drivers. α = 0.2 

means that drivers can only outperform the bottom 20% of 

taxi drivers. The 𝛼 can be learned from a driver’s historical 

trajectories or set by them. 

Given a user’s optimism index 𝛼, we can determine 

his/her time cost for traversing a landmark edge 𝑒 in each 

time slot based on the learnt travel time distribution. For 

example, Figure 5(a) depicts the travel time distribution of 

an landmark edge in a given time slot (𝑐1 ∼ 𝑐5 denotes 5 

categories of travel times). Then, we convert this 

distribution into a cumulative frequency distribution 

function and fit a continuous cumulative frequency curve 

shown in Figure 5. 

 

a)Travel time distribution   (b) Cumulative frequency 

Fig. 5: Optimism index 

This curve represents the distribution of travel time in a 

given time slot. That is, the travel times of different drivers 

in the same time slot are different. So, we cannot use a 

single-valued function. For example, given 𝛼=0.7, we can 

find out the corresponding travel time is 272 seconds, 

while if we set 𝛼=0.3 the travel time becomes 197 seconds. 

6. Evaluation 

6.1 Data - Setting 

6.1.1 Road Network 

We perform the evaluation based on the road network 

of Tamil Nadu, which has 14,257 road nodes and 37,380 

road segments. 

6.2 Taxi Trajectories 

We build our system based on a real trajectory dataset 

generated by taxis. The total distance of the data set is 

more than 1,99,040 thousand kilometers The average 

sampling interval of the data set is 3.1 minutes per point 

and the average distance between two consecutive points is 

about 600 meters. 

6.3 Evaluating landmark graphs 

We build a set of landmark graphs with different values 

of 𝑘 ranging from 500 to 13000. The threshold 𝛿 is set to 

10, i.e., at least ten times per day traversed by taxis and 

𝑡𝑚𝑎𝑥 is set to 30 minutes. Our project each real-user 
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trajectory to our time-dependent landmark graph, and use 

the landmark graph to estimate the travel time of the 

trajectory. We study the accuracy of the time estimation 

changing over 𝑘 and 𝛼. We also investigate the accuracy 

changing over the scale of the taxi trajectory dataset. 

6.4 Evaluation based on synthetic queries 

We generate 500 queries with different TN-distances and 

departure times. The TN-distances between the start point 

and destination ranges from 3 to 43km and follows a 

uniform distribution. The departure time ranges from 6am 

to 10pm and was generated randomly in different time slots. 

6.5 In-the-field evaluation 

We conduct two types of in the field studies:1) The 

same driver traverses the routes suggested by our method 

and baselines at different times. 2) Two drivers (with 

similar driving skills and habits) travel different routes 

(recommended by different methods) simultaneously.  

7. Related Work 

7.1. Driving Direction Services 

Our work differs from the existing routing services as 

follows. First, our driving direction service considers the 

factor a user, and automatically adapts to the user’s driving 

behavior according to his/her driving paths. Second,we 

model the historical traffic pattern using the landmark 

graph, and integrate this information into a time-dependent 

routing algorithm. Third, we mine drivers’ intelligence 

from taxi trajectories. The intelligence is far beyond the 

route distance and traffic flows. 

7.2. Time-Dependent Fastest Path 

The time-dependent fastest path problem is first 

considered in paper[8]. Dreyfus [9] suggested a 

straightforward generalization of Dijkstra algorithm but the 

authors did not notice it does not work for a non-FIFO 

network. Under the FIFO assumption, paper [14] provides 

a generalization of Dijkstra-algorithm that can solve the 

problem with the same time complexity as the static fastest 

route problem. Demiryurek. Present a good case study 

comparing existing approaches for the TDFP problem on 

real-world networks. 

7.3. Traffic-Analysis-Based Approach 

As a very complex problem, urban traffic flow analysis 

has been studied based on the readings of road sensors and 

floating-car-data. These works follow the paradigm of 

“sensor data → traffic flow → drives direction”, and are 

useful in detecting unexpected traffic jams and accidents. 

The major challenge of such kinds of solutions is the small 

coverage and sparse density of the sensor data. For 

example, the traversing speed of a highway with enough 

road sensors or floating cars can be accurately estimated, 

while the inferred speed of many service roads, streets and 

lanes (without enough sensors) are not that precise[14]. 

Given that users can select any locations as destinations, 

sometimes the path finding algorithms based on the 

inferred real-time traffic might not perform as well as we 

expects. Different from the above methods, our approach is 

based on many taxi drivers’ intelligence mined from their 

historical trajectories. This intelligence has implied all the 

key factors finding a fast driving route. Actually, GPS-

embedded taxis can be regarded as probing real-time traffic 

on roads, and the accumulated historical GPS trajectories 

reflect the long-term traffic patterns of a city. As the traffic 

flows of a city follow some patterns in most cases, our 

method is very valuable in finding practically fast driving 

routes for users.  

8. Conclusion 

This project designed a framework for finding fastest 

route from source and destination. Time Dependent 

landmark graph algorithm is designed to provide the user 

with dynamic route when the traffic is high and designed 

for eliminating the round trip travel by analysing the 

landmarks in the route and then Variance Entropy 

Algorithm is designed for determining the estimated travel 

time between two places. Finds out the practically fastest 

route to a destination at a given departure time in terms of 

taxi drivers’ intelligence learned from a large number of 

historical taxi trajectories.  

In our method, we first construct a time-dependent 

landmark graph, and then perform a two-stage routing 

algorithm based on this graph to find the fastest route. We 

build a real system with real world GPS trajectories 

generated by taxis evaluate the system with extensive 

experiments and in-the-field evaluations. The results show 

that our method significantly outperforms both the speed 

constraint-based and the real-time-traffic-based method in 

the aspects of effectiveness and efficiency. Given over 5 

taxis in a region of 1km, more than 60% of our routes are 

faster than that of the speed-constraint-based approach, and 

50% of these routes are at least 20% faster than the latter. 

On average, our method can save about 16% of time for a 

trip, i.e., 5 minutes per 30-minutes driving. We agree that a 

recommended route would become crowded if many 

people take it. This is the common problem of path-finding, 

and this problem is even worse (than ours) in present 

shortest-path and real-time-traffic-based methods (as our 

method can be customized for different drivers). In the 

future, we can reduce this problem by using some 

strategies, such as load balance (offer top three routes) and 

data update (in a relatively fast frequency). Another 
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direction in which we are going to move forward is 

combining real-time traffic information with our approach. 
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