
International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 10

A Framework for Solving Linear Systems of Equations using

Openmp and Cuda

Sai Sruthi
#1

, Arivazhagan N
*2

1Dept. of Information Technology, SRM University, Chennai, India.

ammupambalath@gmail.com
2 Assistant Professor, Dept. of Information Technology, SRM University, Chennai, India.

arivazhagan.n@ktr.srmuniv.ac.in

Abstract— Explaining frameworks of linear equations are

presumably a standout amongst the most investigative

applications of linear algebra. Direct techniques for

registering the arrangement of such frameworks can be

exceptionally extravagant because of high memory

necessities and computational expense. This is a decent

motivation to utilize iterative techniques which processes

just an estimate of the arrangement. This paper overhauls

one of the iterative strategies for direct frameworks of

linear systems of equation on a cuda platform and openmp

platform. It analyzes how quick the parallel code runs than

that of serial code furthermore looks at the cpu and gpu

based parallel computing.

Keywords— Graphics processing unit, Compute unified

development architecture, Parallelization, Congugate

gradient

1. Introduction

From physical science and building to macro

econometric displaying, explaining extensive straight

frameworks of mathematical statements is a typical issue.

For substantial direct frameworks, the direct routines are

not productive as a result of high memory and

computational requests. Iterative routines are to be

considered in such cases. These days Graphics Processing

Units contain elite numerous center processors fit for high

FLOP rates and information throughput being genuinely

broadly useful parallel processors. Since the first thought of

Mark Harris numerous applications were ported to utilize

the GPU for figure serious parts and they get speedups of

few requests of extent contrasting with comparable

executions composed for ordinary CPUs.

As of now there are a few models for GPU processing:

CUDA (Compute Unified Device Architecture) created by

NVIDIA, Stream created by AMD and new rising standard,

OpenCL that tries to bring together distinctive GPU

general figuring API executions giving a general system to

programming advancement crosswise over heterogeneous

stages comprising of both CPUs and GPUs. I utilized the C

CUDA augmentation to add to a library that executes

iterative direct frameworks solvers. OPENMP, a CPU

computing method is also used here.

Parallel machine projects are more hard to compose than

consecutive ones, on the grounds that concurrency presents

a few new classes of potential programming bugs, of which

race conditions are the most widely recognized.

Correspondence and synchronization between the

distinctive subtasks are regularly a percentage of the best

deterrents to getting great parallel system execution. The

most extreme conceivable pace up of a solitary program as

an after effect of parallelization is known as Amdahl's law.

Amdahl’s law states that, if f is the fraction of the code

parallelized, and if the parallelized version runs on a p-

processor machine with no communication or

parallelization overhead, the speedup is given by,

1

(1 − f) + (f/p)

2. Openmp vs Cuda

2.1. OpenMP

Openmp is a usage of multithreading, a parallel

execution plan whereby the expert string (a progression of

in-structions executed sequentially) forks a defined number

of slave strings and an undertaking is isolated among them.

Openmp is essentially intended for imparted memory

multiprocessors, utilizing the SPMD model (Single

Program, Multiple Data Stream): all the processors have

the capacity straightforwardly get to all the memory in the

machine, through a sensibly immediate association.

Projects will be executed on one or more processors that

impart some or the greater part of the accessible memory.

The system is ordinarily executed by numerous

autonomous strings that impart information, yet might

likewise have some extra private memory zones.

2.2. NVIDIA architecture

GPUs fit none of the customary execution models

proposed by Flynn scientific classification, since their

structural planning is very diverse even from the SIMD

execution model. As NVIDIA GPUs are generally

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 11

accessible and their programming surroundings arrived at a

stable adaptation, we chose to spotlight on these

architectures. As a physical format, NVIDIA GPUs are

composed as Streaming Multiprocessors (SM) with basic

scalar processors (SP) on chip. Inside the gadget, strings

have the capacity access information from numerous

memory spaces:

 Local memory: per-thread, private, for temporary data

(implemented in external DRAM);

 Shared memory: for low-latency access to data shared

by cooperating threads in the same SM (implemented

on chip);

 Global memory: for data shared by all threads of a

computing application (implemented in external

DRAM).

2.3. Cuda

On February 2007, NVIDIA Corporation has discharged

the beginning form of the CUDA SDK. It gives two APIs:

the C runtime for CUDA which is conveyed through the

cudart dynamic library and the CUDA driver API which is

conveyed through nvcuda dynamic library. CUDA gives all

the method for a parallel programming model with the

disposition of two sorts of imparted memory: the on-chip

imparted memory that can be impacted by strings of a

piece executing on a SM and the worldwide memory got to

autonomously by the pieces running on the GPU.

Contrasted and other GPU programming systems, for

example, Opencl, the CUDA dialect can be viewed as

abnormal state since it needn't bother with all the low level

introductions and changes. On the other hand, managing

the whole programming structure so as to oversee gadget

gets to, memory exchanges between the gadget can even

now be a monotonous work, then again the Openmp

programming model permits a straightforward and

incremental parallelization. Subsequently, we decided to

make a source-to-source interpreter for Openmp C code to

Cuda.

Fig.1: CPU and GPU architecture

Fig.2: Processing flow of CUDA

Fig. 3: Execution of code in CUDA

3. Congugate Gradient

In arithmetic, the conjugate slope system is a

calculation for the numerical arrangement of specific

frameworks of direct comparisons, in particular those

whose framework is symmetric and positive-unequivocal.

The conjugate slope strategy is regularly executed as an

iterative calculation, pertinent to inadequate frameworks

that are so vast it is not possible be taken care of by a direct

execution or other direct routines, for example, the

Cholesky disintegration.

Expansive scanty frameworks regularly emerge when

numerically fathoming incomplete differential

mathematical statements or enhancement issues. The

conjugate inclination system can likewise be utilized to

take care of unconstrained improvement issues, for

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 12

 example, vitality minimization. It was essentially created

by Magnus Hestenes and Eduard Stiefel.

Suppose we want to solve the following system of

linear equations

Ax = b

 for the vector x where the known n-by-

n matrix A is symmetric (i.e. A
T
 = A), positive

definite (i.e. x
T
Ax > 0 for all non-zero vectors x in R

n
),

and real, and b is known as well. We denote the unique

solution of this system by .

Code in MATLAB

function [x] = conjgrad(A,b,x)

 r=b-A*x;

 p=r;

 rsold=r'*r;

 for i=1:1e6

 Ap=A*p;

 alpha=rsold/(p'*Ap);

 x=x+alpha*p;

 r=r-alpha*Ap;

 rsnew=r'*r;

 if sqrt(rsnew)<1e-10

 break;

 end

 p=r+rsnew/rsold*p;

 rsold=rsnew;

 end

end

4. Iterative Method Implementation Using

Openmp

Conjugate gradient methodis one of the methods of

Krylov subspace method. Writing the codes in parallel

make the method to run fast. OpenMP is one of the parallel

computing which mainly runs on CPU platform. The

principle wellsprings of parallel overhead in any imparted

memory implementation are: worldwide hindrances,

genuine/false offering impacts and burden parity.

On a NUMA framework extra overheads originate from

non-ideal information position which will trigger remote

memory gets to. On account of the CG calculation what's

more OpenMP, there are no major false offering impacts as

most stores are fundamentally stride-1 gets to which

delineate well to the static parts generated by OpenMP

circle mandates.

When parallelizing iterative solvers like the CG-

algorithm, there are three basic types of operations to

consider: vector operations, inner products, sparse matrix

vector product.

5. Iterative Method Implementation using

Cuda

At the point when actualizing the code in cuda stage, it

runs quicker than openmp, since it is executing in GPU. It

has numerous times strings than that of CPU. Each one

string will be executing the free code and that makes the

calculation to run productively and quick. Serial code

executes on host while parallel code executes on device.

CUDA's modifying model likewise accept that both the

host and the gadget keep up their own particular DRAM,

alluded to as host memory and gadget memory, separately.

Subsequently, a project deals with the worldwide, steady,

and composition memory spaces obvious to pieces through

calls to the CUDA runtime. This incorporates gadget

memory allotment deallocation, and in addition

information exchange in the middle of host and gadget

memory.

The general flow of a solver implemented is:

 Allocate memory for matrices and vectors in the host

memory;

 Initialize matrices and vectors in the host memory;

 Allocate memory for matrices and vectors in the device

memory;

 Copy matrices from host memory to device memory;

 Define the device grid layout:

o Number of blocks

o Threads per block

 Execute the kernel on the device;

 Copy back the results from device memory to host

memory

 Memory cleans up.

6. Overall Performance Optimization

Strategies

Performance optimization revolves around three basic

strategies:

 Maximizing parallel execution;

 Optimizing memory usage to achieve maximum

memory bandwidth;

 Optimizing instruction usage to achieve maximum

instruction throughput.

Expanding parallel execution begins with organizing

the calculation in a manner that uncovered however much

information parallelism as could reasonably be expected.

At focuses in the calculation where parallelism is broken

on the grounds that a few strings need to synchronize so as

to impart information between one another, there are two

cases: Either these strings have a place with the same

square, in which case they ought to utilize __syncthreads()

and offer information through imparted memory inside the

same bit call, or they fit in with diverse pieces, in which

case they must offer information through worldwide

memory utilizing two different piece summons, one for

composing to and one for perusing from worldwide

memory.

Concerning improving guideline use, the utilization of

number-crunching directions with low throughput ought to

be minimized. This incorporates exchanging exactness for

http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Positive_definite_matrix
http://en.wikipedia.org/wiki/Positive_definite_matrix
http://en.wikipedia.org/wiki/Positive_definite_matrix
http://en.wikipedia.org/wiki/Real_number

International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print)

Volume 2, Issue 1, January - March 2015 ISSN 2394-6393 (Online)

 13

pace when it doesn't influence the finished result, for

example, utilizing characteristic rather than standard

capacities or single-accuracy rather than twofold exactness.

7. Conclusion

In this paper, I tried to conclude that parallel will be

better when compared with serial computing. Even though

OpenMP is also a parallel way to execute, it has some

disadvantages like thread problem, cache problem which

sometimes makes the algorithm worst than serial code. In

order to recover from that, CUDA can be used. Since cuda

is a GPU based computing it will surely be executing faster

than OpenMP.

Many applications of linear algebra can be then be

converted into parallel. Applications through image

processing, computer science etc can be used. More over

the code can be later implemented using OpenCL.

Acknowledgment

This research paper is made possible through the help

and support from everyone, including: parents, teachers,

family, friends, and in essence, all sentient beings. First and

foremost, I would like to thank Professor Arivazhagan N,

SRM University, for his most support and encouragement.

Finally, I sincerely thank to my parents, families, and

friends, who provide the advice and support. The product

of this research paper would not be possible without all of

them.

References

[1] Girish Sharma, Abhishek Agarwala and Baidurya Bhattacharya, “A

fast parallel Gauss Jordan algorithm for matrix inversion using

CUDA”, at SciVerse ScienceDirect Computers and structures, 2013.

[2] Marcus M, Minc H. Introduction to linear algebra. New ed. New
York: Dover Publications; 1988.

[3] NVIDIA, CUDA C Programming Guide, Version 4.0, 2011.

[4] AMD, ATI Stream Computing - Technical Overview. AMD, Tech.
Rep. 2008

[5] Saad, Y, “Iterative Methods for Sparse Linear Systems”, PWS

Publishing Company, 1996
[6] Khronos OpenCL Working Group, The OpenCL Specification -

Version 1.0. The Khronos Group, Tech. Rep. 2009.

[7] Mei W, Hwu W, Kirk D. Video lectures for ECE 498AL,
University of Illinois [m4v Video].

[8] Fathi Vajargah B. Different stochastic algorithms to obtain matrix

inversion. Appl Math Comput 2007;189:1841–6.
[9] Jie Shen, Jianbin Fan, Henk Sips and Ana Lucia Varbanescu,

“Performance Gaps between OpenMP and OpenCL for Multi-core

CPUs”, 2012 41st International Conference on Parallel Processing
Workshops.

[10] Bogdan Oancea, Tudorel Andrei, Andreea Iluzia Iacob, “CUDA

based iterative methods for linear systems”, AWERProcedia
Information Technology & Computer Science 2012.

[11] Gantmacher FR. Applications of the theory of matrices. 1st ed.

Dover Publications; 2005.
[12] S.F. McGinn and R.E. Shaw, ”Parallel Gaussian Elimination Using

OpenMP and MPI”, in Proc. of the 16th Annual International

Symposium on High Performance Computing Systems and
Applications, pp. 169-173, 2002.

[13] NVIDIA Corporation, “NVIDIA’s Next Generation CUDA

Compute Architecture: Fermi,” 2009.
[14] Michael J. Wolfe, High Performance Compilers for Parallel

Computers, Addison-Wesley Publishing Company, Redwood City,

California, 1996.
[15] R. Membarth, F. Hannig, J. Teich, M. Körner, and W. Eckert,

“Frameworks for Multi-core Architectures: A Comprehensive
Evaluation Using 2D/3D Image Registration,” in ARCS’11, pp.

62–73, 2011.

[16] NVIDIA, “CUDA C Programming Guide.”
http://developer.download.nvidia.com/compute/DevZone/docs/html

/C/doc/CUDACProgramming Guide.pdf, 2012.

Sai Sruthi,currently pursuing MTech in

Department of Information Technology from
SRM University, Chennai. I hold a Bachelor

Degree in Information Technology from

KMCT College of Engineering(Under Calicut
University). I am a member of IEEE.

N.Arivazhagan is Asst.Professor of
Department of information technology, SRM

University, Kattankulathur. He has been

serving more than 25 years of teaching and 1
year industry experience.He is doing research

in Content Based Image Retrieval.He holds a

M.S Degree from Birla Institute of
Technology, Pilani and M.B.A from Madurai

Kamaraj University.

