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Abstract— Measure of reliability P = P(X>Y) is 

considered. Shrinkage estimators are considered for the 

powers of parameter, 'P' under type I and type II censorings. 

Simulation study is conducted to judge the performance of 

estimators.                                                                                         
 

Keywords— Generalized half logistic distribution (GHLD); 

shrinkage estimation; type I and type II censorings; p-value. 
 

1. Introduction 

 The reliability function R(t) is defined as the probability 

of failure-free operation until time t. Thus, if the random 

variable (rv) X denotes the lifetime of an item or system,  

then R(t) = P(X>t). Another measure of reliability under 

stress-strength set-up is the probability P = P(X>Y), which 

represents the reliability of an item or system of random 

strength X subject to random stress Y. A lot of work has 

been done in the literature for the estimation and testing of 

parameter, R(t) and 'P' under censorings and complete 

sample case for individual distributions. For a brief review, 

one may refer to Pugh (1963), Basu (1964), Bartholomew 

(1957, 1963), Tong (1974, 1975), Johnson (1975), Kelly, 

Kelly and Schucany (1976), Sathe and Shah (1981), Chao 

(1982), Constantine, Karson and Tse (1986), Awad and 

Gharraf (1986), Tyagi and Bhattacharya (1989), 

Chaturvedi and Rani (1997,1998), Chaturvedi and Surinder 

(1999), Chaturvedi and Tomer (2002, 2003), Chaturvedi 

and Singh (2006, 2008), Chaturvedi and Pathak (2012, 

2013, 2014), and others. 

       Thompson (1968) introduced the concept of 

'shrinkage estimators'. A lot of work has been done in the 

literature in the direction of shrinkage estimators. For some 

citations, one may refer to George (1986), Ebrahimi and 

Hosmane (1987) , Ghosh, Nickerson and Sen (1987), 

Blattberg & George (1991), Clyde, Parmigiani and 

Vidakovic (1998), Kubokawa (1998), Kolaczyk(1999), 

Longford (1999), Ahmed (2001), Royle and Link (2002), 

Sendur and Selesnick (2002), Fourdrinier, Strawderman, 

and Wells (2003), Pope and Szapudi (2008), Prakash and 

Singh (2008), Chen , Wiesel and O. Hero (2009, 2010), 

Ledoit and Wolf (2012), Carreras and Brannath (2013), 

Liao (2013), Cheng and Liao (2014, 2016), Lu and Su 

(2015). Pandey (1983) proposed various shrinkage 

estimators for the mean of exponential distribution. Tse and 

Tso (1996), Baklizi (2003) and Baklizi and Abu Dayyeh 

(2003) proposed shrinkage estimators of R(t) and 'P' for 

one-parameter exponential distribution. For estimating R(t), 

type I and type II censorings were considered. In order to 

estimate 'P', complete sample case was considered.  

 Half logistic model, obtained as the distribution of the 

absolute standard logistic variate, is probability model 

considered by Balakrishnan (1985). Balakrishnan and 

Hossain (2007) considered generalized (Type II) version of 

logistic distribution and derived some interesting properties 

of the distribution. Ramakrishna (2008) considered two 

generalized versions of HLD namely Type I and Type II 

along with point estimation of scale parameters and 

estimation of stress strength reliability based on complete 

sample.   

 Let the life X of an item have the GHLD, then 

cumulative distribution function (cdf) and probability 

density function (pdf) of the random variable (rv) X are, 

respectively  
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Here, it should be noted that λ is the shape parameter and, 

for λ=1, it comes out to be the half-logistic distribution. Let 

the rv X follow )θ,λ,af(x;
111

distribution and Y follow 

)θ,λ,af(y;
222

distribution. Then, we have  
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 Now, we summarize the results of Chaturvedi, Kang and 

Pathak (2016). Suppose, n items are put on a test and the 

test is terminated after the first r ordered observations are 

recorded. Let n,r0  ,X...XX0
(r)(2)(1)

  

be the lifetimes of first r ordered observations. Obviously, 

(n-r) items survived until 
(r)

X . Let 
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(1.3)      

Sr is complete and sufficient for the family of distribution 

given at (1.1) and the pdf of Sr is  
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(1.4) 

The maximum likelihood estimators (MLES) of 

 P'' and λ are, respectively, 
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The UMVUE of 'P' is given by 
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Now, we consider the case of type I censoring. Let 

(n)(2)(1)
X...XX0  be the failure times of n 

items under test from (1.1). The test begins at time 

0X
(0)

 and the system operates till 
(1)(1)

xX  when the 

first failure occurs. The failed item is replaced by a new 

one and the system operates till the second failure occurs at 

time 
(2)(2)

xX  , and so on. The experiment is terminated 

at time )N(t If . t
oo

be the number of failures during the 

interval ]t[0,
o

, then 
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The MLES of  ' P' and λ are, respectively, 
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where 
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In Section 2, we propose shrinkage estimators for the 

powers of λ. We consider estimation of powers of λ 

because they come in expressions for the moments of 

different distributions and hazard-rate. In Section 3, we 

develop shrinkage estimators of  'P'. Finally, in Section 4, 

numerical findings are presented. 

2. Shrinkage Estimators of Powers of λ 

 

We first consider the shrinkage estimator of 
q

λ based on 

its MLE and type II censored data. Let 
o

λ be the guess 

value of λ . We consider, 

. 1α0 , λ )α-(1  λ̂ αλ
ˆ̂

1

q
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The value of 
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α that minimizes the mean sum of squares 

due to error (MSE) of 
q
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Using (1.4) and (1.5) ,  
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 Since, λ is unknown, we estimate it by 
II

λ̂ .     Now, we 

propose shrinkage estimator using the p-value of the 

likelihood ratio test. Consider 
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is the cumulative distribution function of 
ro

S2 λ . 

Since a large value of 
1

z indicates that λ is close to its 

guess value 
o

λ [see Tse and Tso (1996)], we can use 
1

z to 

form the shrinkage estimator 
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   Now, we consider shrinkage estimator of 
q

λ based on its 

UMVUE and type II censored data. We propose  
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 Since powers of λ are unknown, we replace them by 

their UMVUES given at (1.7). Based on p-value 
1

z already 

defined, 
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    Let us define the shrinkage estimator of 
q

λ based on its 

MLE and type 1 censored data to be   
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The value of α3 which minimizes the MSE of is given by 
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Since, λ is unknown, we use its MLE. 
    The critical region of the likelihood ratio test for testing 

H0 : λ = λo against H1 : λ ≠ λo under type I censoring is 

given by {r ≤ a or r ≥ b}, where 'a' and 'b' are chosen such 

that 

. αb)(rPa)(rP
HoHo

  

If z2 be the p-value of the test, then the shrinkage estimator 

of λq is 

. λzλ̂ )z(1λ
ˆ̂ q

o2

q

I2

q

)(z I
2


           (2.9)                                                                                                    

 The shrinkage estimator of λq based on its UMVUE and 

type I censored data is 
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Here,  
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Based on p-value z2 already defined, 
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3. Shrinkage Estimators of 'P' 
 

For 
II

P̂ defined in (1.6), we propose the shrinkage 

estimator of 'P' to be 
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We can write (1.6) as  
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where the rv F(2r1 ,2r2) follows F-distribution with (2r1,2r2) 
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The distributions for which r1λ1= r2λ2 , 
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Since, λ1 and λ2 are unknown, they are estimated by their 

MLES. 

    Now, we propose shrinkage estimator of 'P' based on the 

p-value related to the likelihood ratio test of the hypothesis 

Ho : P = Po against the alternative H1 : P ≠ Po . For k = Po / 

(1- Po) , these hypotheses are equivalent to H0 : λ1 = k λ2 

against the alternative H1 : λ1 ≠ k λ2 . Denoting by 
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can be seen that the likelihood ratio criterion is 
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If z3 be the p-value of the test, then the shrinkage 

estimator of 'P' is given by 
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We have, 
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Similarly, 
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  (3.9) 

Since λ1 and λ2 are unknown, they are estimated by their 

UMVUES. 

  Based on the p-value z3 already defined, the shrinkage 

estimator of 'P' is given by 
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       Under Type I censoring, the MLE of ‘P’ is given by 
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We observe that the estimators of ‘P’ can be presented 

as the ratio of two Poisson rv’s. Therefore, the distributions 

of the estimators cannot be obtained. We, therefore, 

conduct simulation study for the shrinkage estimators of 

‘P’ under type I censoring. The results are presented in 

Table 3.2.                                    

 
4. Numerical Findings and Conclusion 

 
A simulation study is conducted to investigate the 

performance of the above estimators.  

The indices of our simulations for Section 2 are: 

λ :   the true value of the parameter and is taken to be 1 

λo :   prior guess value of λ and is taken to be 0.50, 0.80, 

1.00, 1.20, 1.50 and 2.00 

q :    power of λ and is taken to be 1, 2 and 3 

CP:  the censoring proportion and is taken to be 0.25, 0.50 

and 0.75 

to:     truncation time point and taken as 0.40, 0.80 and 1.00 

  For each combination of λ and λo, 1000 samples of size 

40 were generated from the distribution given in (1.1). The 

shrinkage estimators for λ
q
 are calculated under both type 

II and type I censorings (considering the above values of 

CP and to respectively) and the relative efficiencies of these 

estimators to the corresponding maximum likelihood 

estimators are calculated as the ratio of the mean squared 

error of the MLE to the mean squared error of the 

shrinkage estimator. Similarly, the relative efficiencies of 

these estimators to the UMVUES are computed. Table 1.1 

presents the relative efficiencies of the shrinkage estimators 

of λ
q
 for λ =1, under type II censoring. Similar results for 

type I censoring are presented in table 1.4.  

 Under type II censoring, we can observe that 

q

II
λ
ˆ̂

performs the best, followed by 
q

)II(z
1

λ
ˆ̂

and 
q

)II(z
1

λ

~~
is the 

worst estimator. One point to be noted is that 
q

II
λ

~~
is equally 

efficient as 
q

II
λ
~

(It can be seen from the formula also). Also, 

as q increases, the relative efficiencies of the estimator 
q

II
λ
ˆ̂

 

increases when λ=λo.  

 Under type I censoring, for q=1, 
q

I

q

I
λ

~~
 and λ

ˆ̂
are equally 

efficient as can be seen from the formula (as 
q

I

q

I
λ
~

λ̂  for 

q=1). However, for q=2 and q=3, the estimator 
q

I
λ

~~
 

performs better than 
q

I
λ
ˆ̂

 except when λo=0.5.  

 Also, we can observe that the shrinkage estimators under 

both type I and type II censorings seem to perform better 

for small sample sizes than for large sample sizes when λ= 

λo.  

   The indices of our simulations for Section 4 are: 

P :    the true value of P=P(X>Y) and is taken to be 

0.65,0.70 and 0.80  

Po:    the initial estimate of  'P' and is taken to be  

        0.55, 0.60, 0.65, 0.70, 0.75 and 0.80 when P=0.65 

        0.60, 0.65, 0.70, 0.75, 0.80 and 0.85 when P=0.70 

        0.70, 0.75, 0.80, 0.85, 0.90 and 0.95 when P=0.80    

r1:   number of X observations and is taken to be 20 and 30 

r2:   number of Y observations and is taken to be 20 and 30 

For each combination of P and Po , 1000 samples of size 40 

were generated for X from the distribution given in (1.1), 

taking λ1 = 1 and 1000 samples of size 40 were generated 

for Y from the same distribution with 1
P

1
λ

2
 . The 

shrinkage estimators for 'P' are calculated under type II 

censoring and their relative efficiencies are computed. 
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Table 3 presents the relative efficiencies of the shrinkage 

estimators for 'P' under type II censoring.   

 From the tables, we can observe that 
II

P

~~
has the highest 

relative efficiency. The shrinkage estimators can be 

arranged in terms of overall performance as follows (from 

best to worst); 
II

P

~~
-

)II(z
3

P

~~
-

II
P
ˆ̂

- 
)II(z

3

P
ˆ̂

   .  

 Under Type I censoring, the shrinkage estimators for ‘P’ 

are directly calculated using simulation. Table 3.2 gives the 

respective relative efficiencies. 

From the tables, we observe that 
I

P
ˆ̂

 performs better than 

I
P

~~

 
when P = Po or when P is close to Po 

 

                                                                                  Table 1.1: Relative efficiencies of the estimators for λ
q
 (when λ=1) under Type II censoring

CP λ0 EF1 EF2 EF3 EF4 EF1 EF2 EF3 EF4 EF1 EF2 EF3 EF4

0.25 0.50 0.4663 0.8501 1.0000 0.4914 0.4388 0.9096 1.0000 0.3565 0.6044 0.9613 1.0000 0.2522

0.25 0.80 0.9302 0.8740 1.0000 0.5644 1.1154 0.9260 1.0000 0.4380 1.6824 1.0051 1.0000 0.3291

0.25 1.00 2.1722 1.4783 1.0000 0.9982 3.8702 1.6013 1.0000 0.9360 10.9352 1.5989 1.0000 0.8472

0.25 1.20 0.8577 1.0785 1.0000 0.7831 0.7520 1.1364 1.0000 0.6873 0.7772 1.2496 1.0000 0.5748

0.25 1.50 0.5887 0.8974 1.0000 0.6087 0.3226 0.8571 1.0000 0.4468 0.1438 0.8695 1.0000 0.2951

0.25 2.00 0.6668 0.8574 1.0000 0.5125 0.4025 0.7182 1.0000 0.3157 0.1385 0.5768 1.0000 0.1668

0.50 0.50 0.8037 0.8894 1.0000 0.6474 1.1993 0.9512 1.0000 0.7583 2.5446 0.9845 1.0000 0.8627

0.50 0.80 1.4578 1.0835 1.0000 0.8335 2.0407 1.0474 1.0000 0.9022 4.2071 1.0232 1.0000 0.9597

0.50 1.00 1.7210 1.1889 1.0000 0.8590 2.4041 1.1525 1.0000 0.9442 5.0746 1.0990 1.0000 1.0096

0.50 1.20 1.3431 1.0784 1.0000 0.7516 1.7213 1.1086 1.0000 0.8440 3.0446 1.1272 1.0000 0.9393

0.50 1.50 1.0534 1.0439 1.0000 0.7183 1.1730 1.1275 1.0000 0.8110 1.4953 1.2475 1.0000 0.9071

0.50 2.00 0.8669 0.9369 1.0000 0.6476 0.7662 0.8804 1.0000 0.6185 0.6536 0.8352 1.0000 0.5193

0.75 0.50 0.6076 0.9221 1.0000 0.3729 0.6219 0.9504 1.0000 0.3737 0.6966 0.9706 1.0000 0.3842

0.75 0.80 1.1156 1.0240 1.0000 0.4595 1.1562 1.0070 1.0000 0.4549 1.3029 0.9980 1.0000 0.4614

0.75 1.00 1.8140 1.2967 1.0000 0.5262 1.9001 1.3165 1.0000 0.5284 2.2944 1.3179 1.0000 0.5468

0.75 1.20 1.2466 1.0557 1.0000 0.4196 1.1537 1.0769 1.0000 0.4135 1.1713 1.1102 1.0000 0.4216

0.75 1.50 0.9739 0.9675 1.0000 0.3854 0.8799 0.9422 1.0000 0.3640 0.7975 0.9084 1.0000 0.3465

0.75 2.00 0.9533 0.9868 1.0000 0.3936 0.9229 0.9648 1.0000 0.3767 0.8316 0.9138 1.0000 0.3631

EF1 denotes the relative efficiency of 

EF2 denotes the relative efficiency of 

EF3 denotes the relative efficiency of 

EF4 denotes the relative efficiency of 

q = 1 q = 2 q = 3

. λ̂ respect to with λ
ˆ̂ q

II

q

II

. λ̂ respect to with λ
ˆ̂ q

II

q

)II(z1

. λ
~
 respect to with λ

~~ q

II

q

II

. λ
~
 respect to with λ

~~ q

II

q

)II(z1

 
 

                Table 1.4: Relative efficiencies of the estimators for λ
q
 (when λ=1) under Type I censoring

t0 λ0 EF1 EF2 EF1 EF2 EF1 EF2

0.40 0.50 0.8462 0.8462 1.0769 0.8932 1.6951 1.0320

0.40 0.80 1.5600 1.5600 1.8881 1.7981 2.9968 2.0668

0.40 1.00 2.0253 2.0253 2.3969 2.5534 3.9860 3.1883

0.40 1.20 1.5248 1.5248 1.4793 1.6101 1.7996 1.6785

0.40 1.50 0.9605 0.9605 0.7456 0.7842 0.6446 0.6301

0.40 2.00 0.8243 0.8243 0.6365 0.6130 0.5067 0.4497

0.50 0.50 0.7376 0.7376 0.7372 0.6992 0.8057 0.7288

0.50 0.80 1.3891 1.3891 1.3414 1.3857 1.4850 1.3777

0.50 1.00 1.7088 1.7088 1.6534 1.8216 1.9834 1.8663

0.50 1.20 1.4005 1.4005 1.1718 1.3712 1.1138 1.3023

0.50 1.50 1.1201 1.1201 0.8400 0.9742 0.6613 0.8305

0.50 2.00 1.0709 1.0709 0.8804 0.9430 0.8201 0.8325

0.80 0.50 0.7821 0.7821 0.7623 0.7611 0.7518 0.7849

0.80 0.80 1.3583 1.3583 1.2303 1.3217 1.1843 1.2616

0.80 1.00 1.4027 1.4027 1.2402 1.3950 1.2041 1.3330

0.80 1.20 1.2785 1.2785 1.0950 1.2485 1.0294 1.1868

0.80 1.50 1.1847 1.1847 1.0188 1.1419 0.9914 1.0904

0.80 2.00 1.1180 1.1180 0.9993 1.0751 0.9999 1.0393

EF1 denotes the relative efficiency of 

EF2 denotes the relative efficiency of 

q = 1 q = 2 q = 3

. λ̂ respect to with λ
ˆ̂ q

I

q

I

. λ
~
 respect to with λ

~~ q

I

q

I
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r1 r2 P0 EF1 EF2 EF3 EF4 P0 EF1 EF2 EF3 EF4

20 20 0.55 0.8747 0.8935 8.6366 1.3112 0.60 1.12935 0.99823 18.60052 1.11717
20 20 0.60 1.3768 1.1896 33.1866 2.1387 0.65 1.34096 1.10779 65.09544 1.42777
20 20 0.65 2.0898 1.4682 12259.9 4.1912 0.70 1.65297 1.29699 3157.477 4.48792
20 20 0.70 1.4433 1.1278 40.7103 3.7192 0.75 1.48301 1.25862 126.3240 2.50296
20 20 0.75 1.0065 0.9074 9.7796 1.8742 0.80 0.88466 0.90377 26.76857 2.65255
20 20 0.80 0.9139 0.9121 4.3181 1.2077 0.85 0.68749 0.84600 11.39580 1.33798
20 30 0.55 0.8367 0.8525 4.5872 1.2575 0.60 1.19634 0.99385 1.02817 1.12319
20 30 0.60 1.4188 1.2145 3.6289 1.9642 0.65 1.45046 1.15393 1.04777 1.51661
20 30 0.65 2.4049 1.5800 2.3518 3.8498 0.70 1.92959 1.48651 1.15393 5.22321
20 30 0.70 1.4160 1.1090 1.5529 3.4440 0.75 1.25041 1.16939 1.00841 3.31816
20 30 0.75 0.9174 0.8692 1.2145 1.7185 0.80 0.66835 0.79089 1.00289 1.89557
20 30 0.80 0.8570 0.9150 1.0541 1.1416 0.85 0.60325 0.87574 1.00077 1.11074
30 20 0.55 0.9389 0.9215 9.9706 1.1710 0.60 1.09220 0.99787 21.44579 1.05095
30 20 0.60 1.3246 1.1332 39.8816 1.6750 0.65 1.21835 1.04993 85.77745 1.22399
30 20 0.65 1.9621 1.4208 5.8E+10 3.1912 0.70 1.41625 1.16233 1.6.E+10 3.56003
30 20 0.70 1.3457 1.1185 39.8856 3.9938 0.75 1.39624 1.19633 85.80269 2.97642
30 20 0.75 0.8683 0.8636 9.9712 2.1097 0.80 0.95976 0.96719 21.44926 1.85767
30 20 0.80 0.7645 0.8740 4.4316 1.2608 0.85 0.71420 0.85612 9.53284 1.43372
30 30 0.55 0.9074 0.8791 10.0304 1.1329 0.60 1.16377 0.99873 19.34240 1.04655
30 30 0.60 1.3243 1.1172 39.0724 1.5483 0.65 1.29019 1.05997 71.87650 1.24242
30 30 0.65 2.1038 1.4825 35761.8 2.8128 0.70 1.54244 1.23926 11374.45 4.70741
30 30 0.70 1.3361 1.1277 44.5385 3.5573 0.75 1.31327 1.19363 101.7306 2.23304
30 30 0.75 0.8067 0.8420 10.8464 1.9089 0.80 0.76185 0.85556 23.42691 2.13786
30 30 0.80 0.7249 0.8821 4.7969 1.1851 0.85 0.65270 0.88676 10.18862 1.14824

EF1 denotes the relative efficiency of 

EF2 denotes the relative efficiency of 

EF3 denotes the relative efficiency of 

EF4 denotes the relative efficiency of 

P = 0.65

Table 3.1 : Relative efficiencies of the estimators for 'P' under Type II censoring

P = 0.70

. P
~
 respect to with P

~~
II)II(z3

. P̂ respect to with P
ˆ̂

IIII

. P̂ respect to with P
ˆ̂

II)II(z3

. P
~
 respect to with P

~~
IIII

 
 

tox toy P0 EF1 EF2 P0 EF1 EF2 P0 EF1 EF2

0.4 0.4 0.55 2.0529 12.3154 0.60 3.2551 8.9529 0.70 1.9608 1.0020

0.4 0.4 0.60 8.1537 49.1242 0.65 13.1623 35.7842 0.75 7.8152 1.0030

0.4 0.4 0.65 35883 14113 0.70 12986 197261 0.80 43926 1.0076

0.4 0.4 0.70 8.2267 48.6763 0.75 12.8310 35.6239 0.85 7.8901 1.0048

0.4 0.4 0.75 2.0493 12.2235 0.80 3.2305 8.9113 0.90 1.9623 1.0063

0.4 0.4 0.80 0.9127 0.9999 0.85 1.4384 3.9606 0.95 0.8726 1.0039

0.4 0.8 0.55 1.6063 6.4291 0.60 1.1760 8.9529 0.70 2.1921 1.0020

0.4 0.8 0.60 6.4072 25.7193 0.65 4.6860 35.7842 0.75 8.7648 1.0030

0.4 0.8 0.65 43077 40734 0.70 132840 197261 0.80 316410 1.0076

0.4 0.8 0.70 6.4558 25.4752 0.75 4.6978 35.6239 0.85 8.7820 1.0048

0.4 0.8 0.75 1.6055 6.3789 0.80 1.1764 8.9113 0.90 2.1939 1.0033

0.4 0.8 0.80 0.7139 2.8361 0.85 0.5235 3.9606 0.95 0.9743 1.0011

0.8 0.4 0.55 1.8396 1.0010 0.60 2.7545 19.0484 0.70 1.8469 1.0087

0.8 0.4 0.60 7.3271 1.0019 0.65 11.1233 39.9222 0.75 7.3714 1.0099

0.8 0.4 0.65 67592 1.0081 0.70 14907 53.1232 0.80 103689 1.0142

0.8 0.4 0.70 7.3736 1.0048 0.75 10.8990 25.4239 0.85 7.4192 1.0132

0.8 0.4 0.75 1.8340 1.0040 0.80 2.7401 7.9321 0.90 1.8466 1.0121

0.8 0.4 0.80 0.8163 1.0034 0.85 1.2195 3.3211 0.95 0.8210 1.0110

0.8 0.8 0.55 1.4602 14.9805 0.60 0.9504 19.0484 0.70 2.1815 1.0087

0.8 0.8 0.60 5.8364 59.9222 0.65 3.7938 39.9222 0.75 8.7251 1.0099

0.8 0.8 0.65 297563 64.1232 0.70 247028 53.1232 0.80 3452333 1.0142

0.8 0.8 0.70 5.8561 35.6239 0.75 3.7949 25.4239 0.85 8.7319 1.0132

0.8 0.8 0.75 1.4587 8.9113 0.80 0.9495 7.9321 0.90 2.1825 1.0121

0.8 0.8 0.80 0.6484 3.9606 0.85 0.4224 3.3211 0.95 0.9694 1.0110

EF1 denotes the relative efficiency of 

EF2 denotes the relative efficiency of 

P = 0.65 P = 0.70 P=0.80

Table 3.2 : Relative efficiencies of the estimators for 'P' under Type I censoring

. P̂ respect to with P
ˆ̂

II

. P
~
 respect to with P

~~
II
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