
Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 9

Compendious Sensible Data Structures for

Top-p Completion in Big Data Store
Vinesh Kumar

#1
, Prof.Jyant Shekhar

#2

1Research Scholar, SVSU, Meerut, India
vinesh.net@rediffmail.com

2Professor, SVSU, Meerut, India

Abstract— Today in every search application, desktop,

web, and mobile devices, All provide some kind of query

auto-completion. In its basic form, the problem consists in

retrieving from a string set a small number of completions,

i.e. strings beginning with a given prefix, that have the

highest scores according to some static ranking. In this

paper, we focus on the case where the string set is so large

that compression is needed to the data structure in

memory. This is a immerging case for web search engines

and social networks, where it is necessary to index

hundreds of millions of distinct queries to guarantee a

reasonable time coverage; and for mobile devices, where

the amount of memory is limited. Mobile devices are very

common now a days. Typing on screen of small display

unit is very difficult task. User require help to speed up .If

we provide compression of scored set then it will be

beneficial for future purpose

In this paper we present three different tree-based data

structures to address this problem, each one with different

space/time/ complexity trade-offs. Experiments on large-

scale datasets show that it is possible to compress the

string sets, including the scores, down to spaces

competitive with the gzip'ed data, while supporting

efficient retrieval of completions at about a microsecond

per completion.

.
Keywords— Top-K Completion; Scored String Sets; Trees;
Compression.

1. Introduction

Auto-completion is an important feature for modern

search engines, social networking sites, mobile devices text

entry, and many web and database applications [35, 23, 16].

Specially, as the user enters a phrase one character at a

time, the system presents the Top-p completion suggestions

to speed up text entry, correct spelling mistakes, and help

users formulate their intent. As shown in Figure 1, a search

engine may suggest query completions of search prefixes, a

browser may complete partial URLs, and a soft keyboard

may predict word completions. Typically, the completion

suggestions are drawn from a set of strings, each associated

with a score. We call such a set a scored string s.

Definition 1.1(Scored string set). A scored string set S,

|S| = n, is a set of n pairs (s,r) where s ∈ Σ
*
 is a string

drawn from an alphabet Σ and r is an integer score.

 (a) Search engine (b) Browser (c) Soft keyboard

Fig.1: Usage scenarios of Top-p completion

 Given a prefix string, the goal is to return the p strings

matching the prefix with the highest scores. Formally, we

define the problem of Top-p completion as follows.

 Problem 1.2 (Top-p Completion). Given a string p ∈Σ*

and an integer k, a Top-p completion query in the scored

string set S returns the p highest scored pairs in Sp = {(s,r)

∈S | p is a prefix of s} (or the whole set if |Sp| < p

 To be effective, an auto-completion system needs to be

responsive, since users expect instantaneous suggestions as

they type. As each keystroke triggers a request, the system

needs to scale to handle the high volume. To host a large

number of unique suggestions, the data should be

compressed to avoid the latency costs associated with

external memory access or distributed data structures. If the

data needs to be hosted on mobile clients, the compression

should further scale across dataset sizes.

 A simple solution is to store all the strings in a tree or

compacted tree [21], and associate each leaf node with its

cor-responding score. Although such a data structure is

compact and allows us to quickly enumerate all the strings

matching a given prefix, we need to explicitly sort the

matches by their scores in order to return the Top-p

completions. For large string sets where short prefixes may

potentially match millions of strings, this approach is

prohibitive in terms of speed. Although we can pre

compute and store the Top-p completions for the short

prefixes [24], this requires a priori knowledge of p and the

space scales poorly with p.

 Many of the Top-p completion application scenarios

exhibit special properties which we can take advantage of

to improve the space and time efficiency of the system.

First, the scores associated with the strings often exhibit a

skewed power law distribution, as demonstrated by the

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 10

histogram of search counts associated with the Google

queries [1] in Figure 2. Most of the queries have low

counts as scores that require only a few bits to encode.

Second, the distribution of the target strings that users

enter one character at a time often approximates the

distribution of the scores, after ignoring the prefixes not

matching any of the strings in the set. Specially, in

practical usages of Top-p completion systems, prefixes of

entrees with higher scores tend to be queried more than

those associated with lower scored entrees. In fact, a

common folklore optimization in practical tree

implementations is to sort the children of each node by

decreasing score. Third, as a large number of strings share

common prefixes, they are highly compressible.

Fig. 2: Score distribution in the Google dataset

In this work, we present three data structures that exploit
the properties to support efficient Top-p completion queries
with different space/time/complexity trade-off.

Completion Tree: A compact data structure based on

compressed compacted tree, where the children of each

node are ordered by the highest score among their

respective descendants. By storing the max score at each

node, we can efficiently enumerate the completions of a

string prefix in score order. This data structure uses

standard compression techniques, such as variable-length

encoding, to reduce space occupancy.

RMQ Tree: A generic scheme that can be applied to any
data structure that bijectively maps a set of strings to

consecutive integers in lexicographic order, by using a
Range Minimum Query (RMQ) data structure [13] on the

sequence of scores to retrieve the Top-p completions. In

our experiments, we apply the scheme to the lexicographic
path-decomposed tree of [17].

Score-Decomposed Tree: A compressed data structure
derived from the path-decomposed tree of [17], where we
use a path decomposition based on the maximum descen-
dant score. This path decomposition enables efficient Top-
p completion queries.

Large scale evaluations on search queries, web URLs,

and English words demonstrate the effectiveness of the

proposed approaches. For example, on the Google query

log with 10M unique qies [1], the Completion Tree

achieves a size of 120 bits/query (including the scores)

while requiring an average of only 3:7 s to compute the

top-10 completion on a simulated workload. In

comparison, the Score-Decomposed Tree increases the

completion time to 8:0 s, but further reduces the size to 62

bits/query. In fact, this is less than 30% of the

uncompressed data size and within 11% of the gzip'ed size.

The RMQ Tree obtains a similar space occupancy at 65

bits/query, but is significantly slower at 33:9 s.

2. Related Work

There is a vast literature on ranked retrieval, both in the

classical and succinct settings. We report here the results

closest to our work.

Using classical data structures, various studies have

examined the task of word/phrase completion [7, 26, 24,

25, 30, 36], though most do not consider datasets of more

than a million strings or explore efficient algorithms on

compressed data structures. In [24], Li et al. pre compute

and materialize the Top-p completions of each possible

word prefix and store them with each internal node of a

tree. This requires a pre-determined k and is space

inefficient. Church et al. employ a kd-tree style suffix array

that alternates the sorting order of nodes between

lexicographic and score order at each level [7]. However,

the lookup time is in the worst case O(n) and has

empirical performance in milliseconds. Recently, Matani

[26] describes an index similar in principle to the proposed

RMQ Tree structure in Section 5, but uses a suboptimal

data structure to perform RMQ. Although the system

achieves sub-millisecond performance, both this and the

previous work require storing the original string set in

addition to the index.

From a theoretical point of view, Bialynicka-Birula and

Grossi [4] introduce the notion of rank-sensitive data

structures, and present a generic framework to support

ranked retrieval in range-reporting data structures, such as

suffix trees and trees. However, the space overhead is super

linear, which makes it impractical for our purposes.

As the strings are often highly compressible, we would

like data structures that approach the theoretic lower bound

in terms of space. Succinct data structures use space that is

the information-theoretically optimal number of bits

required to enco vde the input plus second-order terms,

while supporting operations in time equal or close to that

of the best known classical data structures [20, 28, 3, 33].

Recent advances have yielded many implementations of

string dictionaries based on succinct data structure

primitives [17, 6], without scores.

Hon et al. [19] use a combination of compressed suffix

arrays [18, 12] and RMQ data structures to answer Top-p

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 11

document retrieval queries, which ask for the k highest-

scored documents that contain the queried pattern as a

substring, in compressed space. While this is strictly more

powerful than Top-p completion, as shown in [6], string

dictionaries based on compressed suffix arrays are

significantly slower than prefix-based data structures such

as front-coding, which in turn is about as fast as

compressed trees [17]. The RMQ Tree of Section 5 uses a

similar approach as [19], but is based on a tree instead of a

suffix array. As we will discuss in Section 8.4, speed is

crucial when implementing more sophisticated algorithms,

such as fuzzy completion, on top of the core Top-p

completion data structures.

3. Preliminaries

In this section, we briefly describe some of the data

struc-tures and primitives used in this paper. For additional

details on the design and implementation of these

primitives, please refer to the cited references.

String Dictionaries - A string dictionary is a data

structure that maps a prefix-free set S of strings drawn

from an alphabet bijectively into [0; jSj), where prefix-free

means that no string in the set is a prefix of another string

in the set; this can be guaranteed, for example, by

appending a special terminating null character to every

string. We call Lookup the function that maps a string to

its index, and the inverse function Access, i.e.

Access(Lookup(s)) = s for all s € S. Lookup(s) returns ? if

s is not in S. A popular way of implementing a string

dictionary is by using a tree data structure [14], possibly

compacted, where each chain of edges without branches is

collapsed into a single edge.

Priority queues - A priority queue Q maintains a set

under operations Push(Q; v), which adds the element v to

Q; and Pop(Q), which returns the minimum element in Q

according to a given total ordering on the values, and

removes it from the set. To implement priority queues, we

use a classical bi-nary heap [21]. While alternative

solutions, such as Fibonacci heaps and pairing heaps, have

O(1) amortized insertion cost, they are often slower than

binary heaps in practice.

Bitvectors with Rank and Select - Given a bitvector X

with n bits, we can define the following operations:

Rankb(i) returns the number of occurrences of bit value b

∈{0,1} in X in the range [0,i). Selectb(i) returns the

position of the i-th occurrence of bit value b in X. Note that

Rankb(Selectb(i)) = i. These operations can be supported

in constant time by adding o(n) bits of redundancy to the

bitvector [8, 20]. In our implementations we use the rank9

data structure [37] and a variation of the darray [31] when

only Select is needed.

 Balanced parentheses (BP) - In a sequence of n

balanced parentheses, each open parenthesis (is paired

with its mate close parenthesis). Operations FindClose

and FindOpen find the position of the mate of an open and

close parenthesis, respectively. The sequence can be

encoded as a bitvector, where 1 represents (and 0

represents). The difference between the number of open

and close parentheses in the range [0,i) is called the excess

at i. Note that Excess(i) = 2Rank((i)−i. It is possible to

support the above operations in constant time with a data

structure that takes o(n) bits [20, 28, 2, 33]. In our

implementation we use the Range-Min tree [17], a

variation of the Range-Min-Max tree [2, 33]

 DFUDS representation - The DFUDS (depth-first unary

degree sequence) representation [3] maps a tree with t

nodes to a BP sequence of 2t bits; several traversal

operations can be implemented with a combination of

Rank, Select, FindClose, and FindOpen operations.

 Range Minimum Queries (RMQ) - Given an array A of

n values, the operation RMQ(i; j) returns the position of

the minimum value of A in the range [i; j], according to a

given total ordering of the values (in case of ties, the

leftmost value is chosen). RMQ can be supported in

constant time by pre-computing the Cartesian tree of A,

which can be encoded using BP into 2n + o(n) bits [13]. In

our implementation we use this data structure with a slight

variation in the RMQ algorithm, described in more detail

in Appendix A.

 Implementation details - In implementing the succinct

data structures described above, we are mostly concerned

with the actual speed and space of the data structures we

consider, rather than theoretical optimality. For this reason,

although constant-time implementations of many succinct

primitives are available, we often prefer logarithmic-time

versions. As shown in several papers [31, 37, 2, 17], such

implementations are actually faster and smaller than their

constant-time counterparts. For this reason, when reporting

time complexities, we will ignore the logarithmic factors

introduced by succinct operations, treating them as

constant-timein this case we will use the O notation to

avoid ambiguity. Our implementations of these structures

are freely available as part of the Succinct C++ library [34].

4. Completion Tree

A tree, or prefix tree, is a tree data structure that

encodes a set of strings, represented by concatenating the

characters of the edges along the path from the root node

to each corresponding leaf. We collapse common prefixes

such that each string prefix corresponds to a unique path.

Whereas each edge represents a single character in the

simple tree, a compacted tree, also known as a Patricia

tree or radix tree, allows a sequence of characters to be

associated with each edge such that no node can have a

single child (except for the root node in degenerate

cases).

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 12

To encode the score associated with each string, we

assign to each leaf node the score of the string it

represents. To support efficient Top-p completion, we

further assign to each intermediate node the maximum

score among its descendant leaf nodes. Note that by

construction, the score of each non-leaf node is simply

the maximum score among its children, as exemplified in

Figure 3. As each node score now represents the largest

score among all strings starting with the prefix

corresponding to the node, we can apply it as an exact

heuristic function in a variation of the A* search

algorithm [32] to find the best completion path from a

node representing the prefix. Specially, we first find the

locus node, the highest node in the tree that matches or

extends the prefix string, and insert it into a priority

queue, if found. Iteratively, pop the node with the largest

score. If it is a leaf node, add the string and score

corresponding to the node to the list of completions.

Otherwise, iteratively insert its children to the queue until

k completions have been found or the priority queue is

empty.

Fig.3: Compacted tree with max scores in each node

The worst-case time complexity of this algorithm is

O(|Σ||p|+ |Σ|kllog|Σ|kl),where Σ is the alphabet from which

the strings are composed, p is the input string prefix, k is

the number of requested completions, and l is the average

length of the completions returned excluding the common

prefix p. Specifically, we need to examine up top nodes

with up to|Σ| children each to find the locus node. We may

encounter and expand kl nodes on the way to the leaf nodes

corresponding to Top-p completions. As the algorithm

inserts all children of each expanded node to the priority

queue, we add up to |Σ|kl nodes to the binary heap,

contributing an additional O(|Σ|kllog|Σ|kl) term.

Instead of inserting all children of each expanded node to

the priority queue, if we were to sort the children by order

of decreasing score, we only need to add the first child and

the next sibling, if any, of each expanded node.

Conceptually, we can view this as adding a sorted iterator

to the priority queue. Whenever we remove an iterator from

the queue, we return the first element and insert the

remainder of the iterator back into the queue. With this

change, the time complexity to find the Top-p completions

reduces to O(|Σ||p|+ kllogkl) as we insert a maximum of 2

nodes for each node expanded during the search algorithm.

In practice, sorting the children by decreasing score also

reduces the number of comparisons needed to find the locus

node. A summary of the Top-p completion algorithm on the

Completion Tree data structure is presented in Algorithm 1.

Algorithm 1 Top-p completion with Completion Tree.

Input: Completion Tree T , prefix p, and k 0

Output: List c of Top-p completions of p

1 Q Empty priority queue

2 c Empty list

3 n FindLocus(T , p)

4 if n is not null then

5 Push(Q; (Score(n); n))

6 while Q is not empty do

7 r; n Pop(Q)

8 if n is a leaf node then

9 s String corresponding to n

10 Append (s; r) to result list c

11 if jcj = k then return c

12 else

13 fn; nn First child of n, next sibling of n

14 Push(Q; (Score(fn); fn))

15 if nn is not null then Push(Q; (Score(nn); nn))

16 return c

4.1 Compressed Encoding

In addition to improving the theoretical time complexity,

improving the locality of memory access also plays a

significant role in improving the practical running time, as

accessing random data from RAM and hard drive can be

100 and 10M times slower than from the CPU cache,

respectively, easily trumping any improvements in time

complexity. For example, to improve memory locality

when finding the locus node, we store each group of child

nodes consecutively such that accessing the next sibling is

less likely to incur a cache miss. However, instead of

writing each group of sibling nodes in level order, we write

the encodings of each group of tree node in depth first

search (DFS) order. As each internal node is assigned the

maximum score of its children and the children are sorted

by decreasing score, iteratively following the first child is

guaranteed to reach a leaf node matching the score of an

internal node. Thus, by writing the nodes in depth- firrst

order, we typically incur only one cache miss per

completion, resulting in significant speedup over other

arrangements.

For each node, we encode the character sequence

associated with its incoming edge, its score, whether it is

the last sibling, and an offset pointer to its first child, if

any. Note that if the node has a next sibling, it is simply the

next node. Furthermore, we can use a special value of 0 as

the first child offset for leaf nodes. Assuming 4-byte scores

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 13

and pointers, a naive encoding would require (l + 1) + 4 + 1

+ 4 = l + 10 bytes, where l is the length of the character

sequence.

One way to reduce the size of each node is to apply a

variable-byte encoding to scores and o sets. However, as

each group of child nodes are sorted by decreasing order

and we traverse the children sequentially, we can first

perform delta encoding by storing only the score

difference between the current node and its previous

sibling. As the first child shares the same score as its

parent and is always traversed from its parent node, we can

simply store a differential score of 0. Similarly, we

observe that the first child offset for siblings can only

increase. Thus, we can apply the same delta encoding

techniques to derive the first child offset of a node from its

previous siblings. To find the first child offset for the first

sibling, we can traverse all the remaining siblings and

return the next node, as each set of sibling nodes are stored

in depth first order. However, as the number of siblings

may be large, we simply store the difference in offset

between the first child and the first sibling node. Note that

we still encode leaf nodes with a first child offset of 0.

With delta encoding, we significantly reduce the values

of the node scores and first child offsets. While many

variable-byte encoding schemes exist, we choose to apply

an approach where we encode the size of each value in a

header block. As smaller values, including 0, are much

more frequent than larger values due to the power law

distribution of scores and the depth-first ordering of the

nodes, we choose to allocate two bits in the header to

represent values encoded with 0, 1, 2, or 4 bytes.
1
 We

further allocate another bit in the header to indicate if the

node is the last sibling. Finally, if we limit the maximum

number of characters that we can store with each node to 7

by adjusting how the tree is compacted, we can store the

length of the character sequence in the remaining 3 bits of a

1 byte header. Figure 4 shows the binary Completion Tree

encoding of the example from Figure 3.

Fig.4: Binary Completion Tree encoding

4.2 Implementation Details

As the tree nodes are stored in DFS order, it is possible

to reconstruct the string corresponding to a completion leaf

node by starting from the root node and iterative finding

the child whose subtree node offset range includes the

target leaf node. However, this is an expensive O(j jd)

operation, where d is the depth of the leaf node. Instead, we

can significantly reduce the cost of returning the Top-p

completion strings through additional book keeping in the

search algorithm. Specifically, we store the nodes to be

inserted into the priority queue in an array, along with the

index of its parent node in the array. By modifying the

priority queue to access nodes through their corresponding

array indices, we can retrieve the path from each

completion node to the locus node by following the parent

indices. Thus, we can efficiently construct the completion

string in time O(d) by concatenating the original prefix

string with the character sequences encountered along the

reverse path.

To further improve the running time of the algorithm, we

employ a few bit manipulation techniques that take

advantage of our particular encoding scheme. With

standard variable-byte encoding [38], we need to read

multiple bytes to determine the size and decode the value.

But by storing the size of the variable-byte value in a 2-bit

code, we can determine the size ` by looking up the code c

in a small array: ` sizeFromCode[c]. Furthermore, we can

decode the value v by reading a 64-bit integer from the

starting position p and applying a mask indexed by the size

code c to zero out the extra bytes: v ReadInt64(p) &

codeMask[c].
2

With a direct implementation, a significant amount of

time is spent on matching strings in the prefix and

constructing the completion string. In the compressed

encoding of the Completion Tree, each tree node

represents at most 7 characters. Thus, we can apply a

similar masking technique to compare the first characters

of two strings p and q: isMatch (ReadInt64(p) &

strMask[`]) = (ReadInt64(q) & strMask[`]). When

constructing the completion string, by over-allocating the

string buffer that stores the completion string, we can copy

8 bytes from the node character sequence to the insertion

position in one instruction and advance the insertion point

by the desired length. By replacing several unpredictable

conditional branching instructions with a few simple bit

operations, these optimizations significantly improve the

performance of the runtime algorithm.

5. RMQ Tree

In this section, we describe a simple scheme to augment

any sorted string dictionary data structure with an RMQ

data structure, in order to support Top-p completion.

As shown in Figure 5, if the string set S is represented

with a tree, the set Sp of strings prefixed by p is a subtree.

Hence, if the scores are arranged in DFS order within an

array R, the scores of Sp are those in an interval R[a; b].

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 14

This is true in general for any string dictionary data

structure that maps the strings in S to [0; jSj) in

lexicographic order. We call Prefix Range(p) the operation

that, given p, returns the pair (a; b), or ? if no string

matches the pre x.

Fig. 5: The scores of the strings

 Figure 5: The scores of the strings prefixed by p

correspond to the interval [a; b] in the scores vector R. To

enumerate the completions of p in ranked order, we em-

ploy a standard recursive technique, used for example in

[29, 19]. We build an RMQ data structure on top of R

using an inverted ordering, i.e. the minimum is the highest

score. The index of the first completion is then i = RMQ(a;

b). Now the index of the second completion is the one with

highest score among RMQ(a; i 1) and RMQ(i + 1; b),

which splits again either [a; i 1] or [i + 1; b] into two

subintervals. In general, the index of the next completion is

the highest scored RMQ among all the intervals obtained

with this recursive splitting. By maintaining the intervals in

a priority queue ordered by score, it is hence possible to

find the Top-p completion indices~in O(k log k). We can

then perform k Access operations on the dictionary to

retrieve the strings. The pseudo-code is shown in

Algorithm 2.

Algorithm 2 Top-p completion with RMQ Tree.

Input: Tree T , scores vector R, pre x p, and k 0

Output: List c of Top-p completions of p

1 Q Empty priority queue

2 c Empty list

3 found, a; b Prefix Range(T ; p)

4 if found then

5 i RMQR(a; b)

6 Push(Q; (R[i]; i; a; b))

7 while Q is not empty do

8 r; i; a; b Pop(Q)

9 S AccessT (i)

10 Append (s; r) to result list c

11 if jcj = k then return c

12 if i > a then

13 j RMQR(a; i 1)

14 Push(Q; (R[j]; j; a; i 1))

15 if i < b then

16 j RMQR(i + 1; b)

17 Push(Q; (R[j]; j; i + 1; b))

18 return c

The space overhead of this data structure, beyond the

space needed to store the tree and the scores, is just the

space needed for the RMQ data structure, which is 2n +

o(n) bits, where n = jSj. If the tree can answer Prefix

Range in time TP and Access in time TA, the total time to

retrieve the Top-p completions is O(TP + k(TA + log k)).

The advantages of this scheme are its simplicity and

modu-larity, since it is possible to re-use an existing

dictionary data structure without any significant

modification. In fact, in our experiments we use the

lexicographic compressed tree of [17]. The only change

we needed to make was to implement the operation

PrefixRange. On the other hand, as we will see in Section

8, this comes at the cost of significantly worse

performance than the two other data structures, which are

specifically designed for the task of Top-p completion.

6. Score-Decomposed Tree

In this section, we introduce a compressed tree data

structure specifically tailored to solve the Top-p

completion problem. The structure is based on the succinct

path-decomposed trees described in [17], but with a

different path decomposition that takes into account the

scores. Path decompositions. Let T be the tree built on the

strings of the scored string set S. A path decomposition of

T is a tree T
c
 whose nodes correspond to node-to-leaf

paths in T . The tree is built by first choosing a root-to-leaf

path in T and associating it with the root node u of T
c
; the

children of u are defined recursively as the path

decompositions of the subtrees hanging o the path , and

their edges are labeled with the labels of the edges from the

path to the subtrees. See Figure 6 for an example.

Note that while each string s in S corresponds to a root-

to-leaf path in T , in T
c
 it corresponds to a root-to-node

path. Specifically, each leaf ` in T is chosen at some point

in the construction as the decomposition path of a subtree,

which becomes a node u in T
c
; the path from u to u in T

c

corresponds to the root-to-leaf path of ` in T . For the sake

of simplicity we will say that s corresponds to the node u.

Fig.6: On the left, tree T with the decomposition path

highlighted. On the right, root node u in T
c
 and its

encoding (spaces are for clarity only). In this example v6 is

arranged after v5 because r5 > r6.

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 15

Max-score path decomposition - A path decomposition

is completely defined by the strategy used to choose the

path and order the subtrees hanging off as children of the

root u . Since each string corresponds to a leaf in T , we

can associate its score with the corresponding leaf. We

define the max-score path decomposition as follows. We

choose path as the one to the leaf with the highest score

(ties are broken arbitrarily). The subtrees are ordered

bottom-to-top, while subtrees at the same level are

arranged in decreasing order of score (the score of a

subtree is defined as the highest score in the subtree).

To enable scored queries, we need to augment the data

structure to store the scores. Following the notation of

Figure 6, let u be the root node of T
c
 and v1; : : : ; vd be the

nodes hanging o the path . We call ri the highest score in

the subtree rooted at vi (if vi is a leaf, ri is just its

corresponding score). We add ri to the label of the edge

leading to the corresponding child, such that the label

becomes the pair (bi; ri).

Succinct tree representation - To represent the Score-

Decomposed Tree, we use the same encoding described in

[17], which we briefly summarize here. For each node u in

T
c
 we build three sequences Lu, BPu, and Bu. Figure 6

shows the encoding of the root node u ; the other nodes are

encoded recursively. Lu contains the concatenation of the

node and edge labels along the path , interleaved with

special characters 1; 2; : : : that indicate how many

subtrees branch of that point in the path . We call the

positions of these special characters branching points. BPu

contains one open parenthesis for each child of u ,

followed by a single close parenthesis. Bu contains the

sequence of the characters bi branching o the path in

reverse order. The sequences for each node are

concatenated in DFS order into the three sequences L, BP,

and B. In particular, after prepending an open parenthesis,

BP is the DFUDS representation of the topology of the

path-decomposed tree. Note that the branching characters

bi are in one-to-one correspondence with the open

parentheses in BP, which in turn correspond to the nodes

of T
c
. In addition, we need to store the scores in the edges

along with the branching characters. We follow the same

strategy used for the branching characters: concatenate the

ri's in reverse order into a sequence Ru , and then

concatenate the sequences Ru for each node u into a

sequence R in DFS order. Finally, append the root score to

R.

The advantage of storing BP, B, L, and R separately is

that they can be compressed independently with

specialized data structures, provided that they support the

operations needed by the traversal algorithms. Specifically,

BP and B are stored explicitly as a balanced parentheses

structure and character array, respectively. We compress

the sequence of labels L using a variant of RePair [22] that

supports scanning each label in constant-time per character

[17]. The sequence R is compressed using the data

structure described in Section 7.

Fig.7: Score-Decomposed Tree example and its encoding

Top-p completions enumeration - The operations

Lookup and Access [17] do not need any modi cation, as

they do not depend on the particular path decomposition

strategy used. We now describe how to support Top-p

completion queries. Because of the max-score

decomposition strategy, the high-est score in each subtree

is exactly the score of the decompo sition path for that

subtree. Hence if ri is the highest score of the subtree

rooted in vi, and ui is the node in T
c
 corresponding to that

subtree, then ri is the score of the string corresponding to ui.

This implies that for each (s; r) in S, if u is the node

corresponding to s, then r is stored in the incoming edge of

u, except when u is the root u , whose score is stored

separately. Anot her immediate consequence of the

decomposition is that the tree has the heap property: the

score of each node is less or equal to the score of its parent.

We exploit this property to retrieve the Top-p

completions. First, we follow the algorithm of the Lookup

operation until the pre x p is exhausted, leading to the

locus node u, the highest node whose corresponding string

contains p. This
~
 j jj j takes time O(p). By construction,

this is also the highest scored completion of p, so we can

immediately report it. To nd the next completions, we note

that the prefix p ends at some position i in the label Lu.

Thus, all the other completions must be in the subtrees

whose roots are the children of u branching after position i.

We call the set of such children the seed set, and add them

into a priority queue.

To enumerate the completions in sorted order, we extract

the highest scored node from the priority queue, report the

string corresponding to it, and add all its children to the

priority queue. For the algorithm to be correct, we need to

prove that, at each point in the enumeration, the node

corresponding to the next completion is in the priority

queue. This follows from the fact that every node u

corresponding to a completion must be reached at some

point, because it is a descendant of the seed set. Suppose

that u is reported after a lower-scored node u
0
. This means

that u was not in the priority queue when u
0
 was reported,

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 16

implying that u is a descendant of u
0
. But this would

violate the heap property.

The previous algorithm still has a dependency on the

number of children in each node, since all of them must be

placed in the priority queue. With a slight modification in

the algorithm, this dependency can be avoided. Note that

in the construction, we sort the children branching of the

same branching point in decreasing score order. Thus, we

can delay the insertion of a node into the priority queue

until after all other higher-scored nodes from the same

branching point have already been expanded. For each

node u, the number of branching points in Lu is at most

jLuj. Hence, we add at most jLu j + 1 nodes to the priority

queue: 1 for each branching point and the next sibling, if

any, of node u. Thus, the time to return k completions is

O(lk log lk) where l is the average length of the

completions returned minus the prefix length jpj.

Comparison with Completion Tree - The algorithm de-

scribed above is very similar to Algorithm 1 for the

Completion Tree. In fact, the Score-Decomposed Tree can

be seen as a path decomposition of the Completion Tree,

and the previous algorithm as a simulation of Algorithm 1

on the transformed tree. However there are two significant

differences. First, the scores in the Completion Tree along

the max-score path are, by construction, all the same. Thus,

they can be written just once. Hence, while the Completion

Tree stores at least 2n- 1 scores for n strings, the Score-

Decomposed Tree only stores n. Second, after the locus

node is found, only k 1 nodes need to be visited in order to

return k completions. In contrast, Completion Tree may

require visiting up to (kl) nodes. This property makes the

Score-Decomposed Tree very suitable for succinct

representations, whose traversal operations are signi cantly

slower than pointer-based data structures.

7. Score Compression

For both data structures described in Section 5 and

Section 6, it is necessary to store the array R of scores, and

perform random access quickly. Further, it is crucial to

effectively compress the scores: if stored directly as 64 bit

integers, they would take more than half of the overall

space.

As noted in Section 1, many scoring functions (number

of clicks/impressions, occurrence probability, . . .) exhibit

a power law distribution. Under this assumption, encoding

the scores with -codes [11] (or in general -codes [5]) would

give nearly optimal compression. However it would not be

possible to support efficient random access to such arrays.

Specifically, we experimented with a random-access

version of -codes: concatenate the binary representations of

the values of R (without the leading 1) into a bitvector and

use a second bitvector to delimit their endpoints, which can

be retrieved using Select1. While this obtained very good

compression, it came at the cost of a significant slowdown

in retrieval.

We use instead a data structure inspired by Frame of

Reference compression [15], which we call packed-blocks

array. The scores array of length n is divided into blocks of

length l; within each block j the scores are encoded with bj

bits each, where bj is the minimum number of bits

sufficient to encode each value in the block. The block

encodings are then concatenated in a bitvector B. To

retrieve the endpoints of the blocks inside B we employ a

two-level directory structure: the blocks are grouped into

super-blocks of size L, and the endpoint of each block is

stored relative to the beginning of the superblock using

O(log(Lw)) bits, where w is the size in bits of the largest re

presentable value. The endpoint of each superblock is

encoded using O(log(nw)) bits. To retrieve a value, the

endpoints of its block are retrieved using the directory

structure; then bj is found by dividing the size of the block

by l. The overall time complexity is constant. In our

implementation, we use l = 16, L = 512, 16-bit integers for

the block endpoints, and 64-bit integers for the super-block

endpoints.

In our experiments, the slowdown caused by the packed-

blocks array instead of a plain 64-bits array was basically

negligible. On the other hand, as we show in Section 8 in

more detail, we obtain very good compression on the

scores, down to a few bits per integer. We attribute the

good compression to the fact that each group of sibling

scores are arranged in DFS order. As the decomposed tree

exhibits the heap property, the score of each node upper

bounds the scores of its descendants. This increases the

likelihood that adjacent sibling groups have scores with the

same order of magnitude. Hence, the waste induced by

using the same number of bits for l consecutive values is

relatively small.

8. Experimental Analysis

To evaluate the effectiveness of the proposed Top-p

comple-tion techniques, Completion Tree (CT), Score-

Decomposed Tree (SDT), and baseline RMQ Tree (RT),

we will compare their effectiveness on the following

datasets from different application scenarios on an Intel i7-

2640M 2.8GHz processor with 128/512/4096KB of L1/2/3

cache and 8GB of RAM, compiled with Visual C++ 2012

running on Windows 8.

 QueriesP: 10,154,742 unfiltered search queries and their

associated counts from the Google query log [1]. This

dataset is representative of the style and frequency of

queries users may enter into the search box of a search

engine or large website.

QueriesQ: More than 400M filtered search queries and

their click counts from a commercial search engine for

scalability evaluation.

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 17

URLs: 18M URL domains and click counts derived from

the query click log of a commercial search engine, rep-

resenting the scenario of URL completion suggestions in

web browser address bars. As users generally skip the

initial URL protocol (eg. http) and often the www domain

prefix, for each URL, we artificially inject additional

entrees with the same count to accommodate such

behavior, for a total of 42M unique scored strings. Unlike

queries, URLs share a small set of extension suffixes,

which makes the data more compressible.

Unigrams: The top 1M words and their probabilities from

the Microsoft Web N-gram Service (bing-body:apr10)

[27]. We quantize the probabilities to b1000 ln(p)c. This

dataset is representative of the lexicons used by mobile

devices with soft keyboards, which need a large lexicon for

each language to support predictive text entry and spelling

correction, but the tight memory resources require a space-

efficient storage.

In each dataset we subtracted from the scores their mini-

mum, so that the smallest score is 0, without a affecting

the ordering. The minimum is then added back at query

time.

8.1 Space

We evaluate the compactness of the data structures by

reporting in Table 1 the average number of bits per string

(including score). For comparison, we also report the size

of the original uncompressed text le (Raw) and the gzip

compressed binary (GZip). Across the 4 datasets, the three

presented techniques achieve an average compression ratio

of between 29% and 51%, with SDT consistently having

the smallest size. In fact, its size is only 3% larger than that

achieved by gzip compression on average, and is actually

10% smaller on the Unigrams datatset.

Table 1: Data structure sizes in bits per string

Dataset Raw GZip CT SDT RT

QueriesP

54.3 119.5 62.5 66.5

208.8

QueriesQ 238.6 58.9 113.0 60.2 63.4

URLs 238.7 64.7 140.9 68.6 61.0

Unigrams 114.3 44.2 49.3 39.8 42.1

To better understand how the space is used, we present

in Figure 8 the storage breakdown of each of the

techniques on QueriesA. For CT, 70% of the space is used

to store the uncompressed character sequences.

Compressing the node character sequences with RePair

[22] can further reduce the size, but will incur some

sacrifice in speed. With delta en-coding, storing the scores,

including the 2 bit header, takes only 4.0 and 9.6 bits per

node and string, respectively. In comparison, standard

variable-byte encoding with a single continuation bit [38]

requires at least 8 bits per node. Simi-larly, we utilize an

average of only 16.4 bits per string in the dataset to encode

the tree structure. As reference, it would have required 24

bits just to encode the index of a string.

For SDT, nearly 90% of the space is dedicated to storing

the compressed labels and branching characters. On

average, each score takes 4.1 bits, less than half of CT;

while maintaining the tree structure via BP requires only

2.7 bits per string. RT behaves similarly except each score

takes 4.9 bits as the child nodes are sorted

lexicographically rather than by score. In addition, it

requires a Cartesian tree to perform Range Minimum

Queries, which takes a further 2.7 bits per string.

Fig.8: Data structure size breakdowns

8.2 Time

To evaluate the runtime performance of the proposed

data structures, we synthesize a sequence of completion

requests to simulate an actual server workload.

Specifically, we first sample 1M queries in random order

from the dataset according to the normalized scores.

Assuming that user queries arrive according to a Poisson

process, we can model the inter-arrival time of each query

using an exponential distribution. We can control the

average queries per second (QPS) by adjusting the

parameter of the exponential distribution. For simplicity,

we assume that each subsequent keystroke arrives 0.3

seconds apart, corresponding to an average typing speed of

40 word per minutes. Users will continue to enter

additional keys until the target query appears as the top

suggestion, or until the query has been fully entered. Note

that with higher QPS, requests from different queries are

more likely to overlap, leading to more cache misses.

In Table 2, we present the mean time to compute the

top-10 completions, averaged over 10 runs. Overall, CT

achieves the best performance, about twice as fast as SDT.

While much of the differences can be attributed to SDT's

use of succinct operations for tree traversal and Re pair

decoding of label sequence L, CT's better memory locality,

where all node information are stored together, still plays

an important part. For instance, we see that when the nodes

are not arranged for locality, as is the case for RT, the

performance is extremely poor. Similarly, as the requests

corresponding to higher QPS exhibit less overlap in

memory access, the performance degrades by an average

of 10% for CT and 21% for SDT. As the prefixes used by

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 18

the two workloads differ only in order, the performance

gap is due entirely to the effect of CPU cache, where CT

shines. To simulate a moderate workload, we use 1K QPS

in the remaining analyses.

Table 2: Average time per top-10 completion query in s

To better understand the performance differences

between the techniques, we break down the total time to

compute the top-10 completions on QueriesA into the time

spent finding the locus node and computing each

successive completion. As shown in Figure 9, CT using

pointer arithmetic is significantly faster than data structures

using balanced parentheses for traversal, especially in

finding the initial locus node. The-oretically, the cost of

retrieving each additional completion increases

logarithmically. But in practice, the incremental cost for

both CT and SDT remains mostly constant (not shown), as

it is dominated by memory access time, with decreasing

probability of cache miss for each additional completion. In

fact, for RT, it actually takes less time to compute each

additional completion. Furthermore, although we are also

returning the completion string, each completion in SDT is

about twice as fast as a random Access operation. CT has

an even larger ratio due to its less efficient Access

operation. Thus, by integrating string construction into the

completion algorithm, we reduce the overall time required

to enumerate the Top-p completions.

Fig.9: Completion time breakdowns

In terms of build time, CT, SDT, and RT with

unoptimized code currently take an average of 1.8, 7.8, and

7.7 s per string in QueriesA, respectively, with RePair

compression taking up 73% of the time for the two

succinct trees. All algorithms use memory linear to the size

of the binary output.

8.3 Scalability

To assess the scalability of the data structures, we

compare their performance on different size subsets of the

QueriesB dataset. Specifically, to mimic practical scenarios

where we have a limited memory budget and can only

afford to serve the most popular queries, we will generate

these subsets by taking the top-N distinct queries in

decreasing score order. Figure 10 plots the change in

average bytes per query as we increase the number of

queries. Overall, we see that lower count tail queries are

longer and require more space across all techniques, likely

due to the different characteristics exhibited by queries

with only a few counts. While SDT requires more space

than CT below 100 queries due to its large sublinear

overhead, its size continues to fall with increasing number

of queries and actually becomes smaller than GZip on a

wide range of dataset sizes.

We present in Figure 11 the effect the number of queries

has on the average time per completion for top-10

completion requests. We use the synthesized workload

based on the full QueriesB dataset to best approximate real

world usage scenar-ios where users enter prefixes without

knowing what queries the system can complete. Thus, both

the average number of completions and average

completion length increase with the dataset size.

Fig.10: Data structure size vs. dataset size

Fig.11: Average time per completion vs. dataset size

As shown, the average time per completion for CT

increases very slowly, due to increasing completion length

and more cache misses. It is higher for smaller datasets as

the we have fewer completions to distribute the cost of

Find-Locus over. As SDT accesses more lines of CPU

cache per completion, it performs worse than CT, with

increasing time ratio. RT further suffers from lack of

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 19

memory locality among the top completions which

magnifies the e ect of cache miss.

8.4 Discussions

In practical scenarios, auto-completion needs to support

not only exact prefix matches, but also inexact matches due

to differences in casing, accents, or spelling. One way to

support case and accent insensitive match is to normalize

both the dataset strings and the input prefix into lowercase

unaccented characters before computing the completions.

However, this removes the original casing and accents

from the completions, which may be important for certain

languages and scenarios.

An alternative technique is to apply a fuzzy completion

algorithm, such as the one described by Duan and Hsu

[10]. In short, after adding the root node to a priority

queue, iteratively add the children of the best path to the

queue, applying a penalty as determined by a weighted

transformation function if the character sequence of the

child node does not match the input prefix. Once a path

reaches a leaf node in the tree and has explained all

characters in the input prefix, return the completion. This

fuzzy completion algorithm only requires basic tree

traversal operations and access to the best descendant score

of each node, which are supported by all of the proposed

tree data structures. As this algorithm essentially merges

the top completions of various spell corrected prefixes, the

ability to retrieve additional completions efficiently and

on-demand is critical to meeting target performances on

web-scale server loads.

Another common scenario is the need to associate

additional data with each string entry. For example, to map

the injected partial URLs from the URLs dataset to their

canoni-cal forms, as shown in Figure 1b, we can create an

array that maps the index of each string in the dataset to

the index of full URL, or a special value if no alteration

mapping is required. These auxiliary arrays are often

sparse and can be compressed efficiently using various

succinct and compressed

data structures [31]. Although CT only maps each

completion to a node o set, we can create a small bitvector

with Rank and Select capabilities to convert between the o

sets and indices.

Furthermore, some applications need to retrieve the Top-

p completions according to a dynamic score that depends

on the prefix and completion. As the static score is usually

a prominent component of the dynamic score, an

approximate solution can be obtained by taking the Top-p
0

completions with k
0
 > k according to the static score and

re-ranking the completion list.

To truly scale to large datasets, we need to build the

proposed tree structures efficiently. Although we have not

discussed the build process in detail due to the lack of

space, we have implemented efficient algorithms that scale

linearly with the size of the dataset. For CT, we have

further developed efficient techniques to merge trees with

additive scores, enabling distributed tree building across

machines.

9. Conclusion

In this paper, we have presented three data structures to

address the problem of Top-p completion, each with

different space/time/complexity trade-offs. Experiments on

large-scale datasets showed that Completion Tree, based

on classical data structures, requires roughly double the

size of Score-Decomposed Tree, based on succinct

primitives. However, it is about twice as fast. As it turns

out, organizing the data in a locality-sensitive ordering is

necessary to the performance gains of these two structures

over the simpler RMQ Tree.

For scenarios where memory is scarce, Score-

Decomposed Tree can achieve sizes that are competitive

with gzip. When throughput dominates the cost,

Completion Tree can reduce the time for each completion

to under a microsecond. For most applications, the

difference of a few microseconds between Completion

Tree and Score-Decomposed Tree should be negligible.

However, for algorithms that require numerous tree

traversals, such as fuzzy completion where we consider a

large number of locus nodes, the speedup from Completion

Tree may become significant.

As handling big data becomes ever more important,

succinct data structures have the potential to significantly

reduce the storage requirement of such data while enabling

efficient operations over it. Although their theoretical

performance matches their classical counterparts, there is

still a noticeable gap in practice. It is an interesting open

question whether such gap can be closed, thus obtaining

the best of both worlds.

Acknowledgements

 The first author would like to thank Dr. Jayant Shekhar for discussions
and suggestions on an early draft of the paper.

.

References

[1] AOL search data. http://www.gregsadetsky.com/aol-data/, 2006.
[2] D. Arroyuelo, R. Canovas, G. Navarro, and K. Sadakane. Succinct

trees in practice. In ALENEX, pages 84{97, 2010.

[3] V. D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, Raman, and S.
S. Rao. Representing trees of higher degree. Algorithmica,

43(4):275{292, 2005.

[4] I. Bialynicka-Birula and R. Grossi. Rank-sensitive data structures.
In SPIRE, pages 79{90, 2005.

[5] P. Boldi and S. Vigna. Codes for the World Wide Web. Internet

Mathematics, 2(4):407{429, 2005.
[6] N. R. Brisaboa, R. Canovas, F. Claude, M. A. Mart nez-Prieto, and

[7] G. Navarro. Compressed string dictionaries. In SEA, pages 136{147, 2011.

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 20

[8] K. W. Church, B. Thiesson, and R. Ragno. K-best su x arrays. In

HLT-NAACL (Short Papers), pages 17{20, 2007.

[9] D. R. Clark. Compact pat trees. PhD thesis, University of Waterloo,
Waterloo, Ont., Canada, Canada, 1998. UMI Order No. GAXNQ-

21335.

[10] P. Davoodi, R. Raman, and S. R. Satti. Succinct representations of
binary trees for range minimum queries. In COCOON, pages

396{407, 2012.

[11] H. Duan and B.-J. P. Hsu. Online spelling correction for query
completion. In WWW, pages 117{126, 2011.

[12] P. Elias. Universal codeword sets and representations of the

integers. IEEE Transactions on Information Theory, 21(2):194{203,
Mar. 1975.

[13] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM,

52(4):552{581, 2005.
[13] J. Fischer and V. Heun. Space-e cient preprocessing schemes for

range minimum queries on static arrays. SIAM J. Comput.,

40(2):465{492, 2011.
[14] E. Fredkin. Tree memory. Commun. ACM, 3:490{499, September

1960.

[15] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations

and indexes. In ICDE, pages 370{379, 1998.

[16] J. Grieves. The secrets of the Windows Phone 8 keyboard.

http://blogs.windows.com/windows_
phone/b/windowsphone/archive/2012/12/06/the-secrets-of-the-

windows-phone-8-keyboard.aspx, December 2012.

[17] R. Grossi and G. Ottaviano. Fast compressed trees through path
decompositions. In ALENEX, pages 65{74, 2012.

[18] R. Grossi and J. S. Vitter. Compressed su x arrays and su x trees with

applications to text indexing and string matching. SIAM J. Comput.,
35(2):378{407, 2005.

[19] W.-K. Hon, R. Shah, and J. S. Vitter. Space-e cient framework for

Top-p string retrieval problems. In FOCS, pages 713{722, 2009.
[20] G. Jacobson. Space-e cient static trees and graphs. In FOCS, pages

549{554, 1989.
[21] D. E. Knuth. The Art of Computer Programming, Volume 3:

Sorting and Searching. Addison-Wesley, Reading, USA, 2nd

edition, 1998.

[22] N. J. Larsson and A. Mo at. O ine dictionary-based compression. In

Data Compression Conference, pages 296{305, 1999.
[24] F. Li. Simpler search. http: //blog.twitter.com/2012/07/simpler-

search.html, July 2012.G. Li, S. Ji, C. Li, and J. Feng. E cient type-

ahead search on relational data: a TASTIER approach. In SIGMOD,
pages 695{706, 2009.

[25] G. Li, J. Wang, C. Li, and J. Feng. Supporting e cient Top-p queries

in type-ahead search. In SIGIR, pages 355{364, 2012.
[26] D. Matani. An O(k log n) algorithm for prefix based ranked

autocomplete. http://www.dhruvbird.com/autocomplete.pdf, 2011.

Preprint.
[27] Microsoft Web N-gram Service. http://web-

ngram.research.microsoft.com/.

[28] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing,

31(3):762{776, June 2001.

[29] S. Muthukrishnan. Efficient algorithms for document retrieval
problems. In SODA, pages 657{666, 2002.

[30] A. Nandi and H. V. Jagadish. E ective phrase prediction. In VLDB,

pages 219{230, 2007.

[31] D. Okanohara and K. Sadakane. Practical entropy-compressed

rank/select dictionary. In ALENEX, 2007.

[32] S. Russell and P. Norvig. Arti cial Intelligence: A Modern
Approach. Prentice Hall, Upper Saddle River, N.J., 3 edition, 2003.

[33] K. Sadakane and G. Navarro. Fully-functional succinct trees. In

SODA, pages 134{149, 2010.
[34] Succinct library. http://github.com/ot/succinct.

[35] D. Sullivan. How Google Instant's autocomplete suggestions work.

http://searchengineland.com/how-google-instant-autocomplete-
suggestions-work-62592, April 2011.

[36] R. Vernica and C. Li. E cient Top-p algorithms for fuzzy search in

string collections. In KEYS, 2009.
[37] S. Vigna. Broadword implementation of rank/select queries. In

WEA, pages 154{168, 2008.
[38] H. E. Williams and J. Zobel. Compressing integers for fast le

access. Comput. J., 42(3):193{201, 1999.

