
Special Issue of International Journal of Linguistics and Computational Applications  ISSN 2394-6393 (Online) ISSN 2394-6385 (Print) 

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications” 

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.  

March 11-12, 2016.                                            Published on January 2017  

 

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications 

          9 

Compendious Sensible Data Structures for  

Top-p Completion in Big Data Store 
Vinesh Kumar

#1
, Prof.Jyant Shekhar

#2
 

1Research Scholar, SVSU, Meerut, India 
vinesh.net@rediffmail.com  

2Professor, SVSU, Meerut, India 
 

 
Abstract— Today in every search application, desktop, 

web, and mobile devices, All provide some kind of query 

auto-completion. In its basic form, the problem consists in 

retrieving from a string set a small number of completions, 

i.e. strings beginning with a given prefix, that have the 

highest scores according to some static ranking. In this 

paper, we focus on the case where the string set is so large 

that compression is needed to  the data structure in 

memory. This is a immerging case for web search engines 

and social networks, where it is necessary to index 

hundreds of millions of distinct queries to guarantee a 

reasonable time coverage; and for mobile devices, where 

the amount of memory is limited. Mobile devices are very 

common now a days. Typing on screen of small display 

unit is very difficult task. User require help to speed up .If 

we provide compression of scored set then it will be 

beneficial for future purpose 

In this paper we present three different tree-based data 

structures to address this problem, each one with different 

space/time/ complexity trade-offs. Experiments on large-

scale datasets show that it is possible to compress the 

string sets, including the scores, down to spaces 

competitive with the gzip'ed data, while supporting 

efficient retrieval of completions at about a microsecond 

per completion. 

. 
Keywords— Top-K Completion; Scored String Sets; Trees; 
Compression. 
 

1. Introduction 

Auto-completion is an important feature for modern 

search engines, social networking sites, mobile devices text 

entry, and many web and database applications [35, 23, 16]. 

Specially, as the user enters a phrase one character at a 

time, the system presents the Top-p completion suggestions 

to speed up text entry, correct spelling mistakes, and help 

users formulate their intent. As shown in Figure 1, a search 

engine may suggest query completions of search prefixes, a 

browser may complete partial URLs, and a soft keyboard 

may predict word completions. Typically, the completion 

suggestions are drawn from a set of strings, each associated 

with a score. We call such a set a scored string s. 

Definition 1.1(Scored string set). A scored string set S, 

|S| = n, is a set of n pairs (s,r) where s ∈ Σ
*
 is a string 

drawn from an alphabet Σ and r is an integer score. 

 

 

 

 

 

 

 
   (a) Search engine (b) Browser (c) Soft keyboard 

Fig.1:  Usage scenarios of Top-p completion 
 

 Given a prefix string, the goal is to return the p strings 

matching the prefix with the highest scores. Formally, we 

define the problem of Top-p completion as follows. 

 Problem 1.2  (Top-p Completion). Given a string p ∈Σ* 

and an integer k, a Top-p completion query in the scored 

string set S returns the p highest scored pairs in Sp = {(s,r) 

∈S | p is a prefix of s} (or the whole set if |Sp| < p 

 To be effective, an auto-completion system needs to be 

responsive, since users expect instantaneous suggestions as 

they type. As each keystroke triggers a request, the system 

needs to scale to handle the high volume. To host a large 

number of unique suggestions, the data should be 

compressed to avoid the latency costs associated with 

external memory access or distributed data structures. If the 

data needs to be hosted on mobile clients, the compression 

should further scale across dataset sizes. 

 A simple solution is to store all the strings in a tree or 

compacted tree [21], and associate each leaf node with its 

cor-responding score. Although such a data structure is 

compact and allows us to quickly enumerate all the strings 

matching a given prefix, we need to explicitly sort the 

matches by their scores in order to return the Top-p 

completions. For large string sets where short prefixes may 

potentially match millions of strings, this approach is 

prohibitive in terms of speed. Although we can pre 

compute and store the Top-p completions for the short 

prefixes [24], this requires a priori knowledge of p and the 

space scales poorly with p. 

 Many of the Top-p completion application scenarios 

exhibit special properties which we can take advantage of 

to improve the space and time efficiency of the system. 

First, the scores associated with the strings often exhibit a 

skewed power law distribution, as demonstrated by the 
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histogram of search counts associated with the Google 

queries [1] in Figure 2. Most of the queries have low 

counts as scores that require only a few bits to encode. 

Second, the distribution of the target strings that users 

enter one character at a time often approximates the 

distribution of the scores, after ignoring the prefixes not 

matching any of the strings in the set. Specially, in 

practical usages of Top-p completion systems, prefixes of 

entrees with higher scores tend to be queried more than 

those associated with lower scored entrees. In fact, a 

common folklore optimization in practical tree 

implementations is to sort the children of each node by 

decreasing score. Third, as a large number of strings share 

common prefixes, they are highly compressible. 

 

 
Fig. 2: Score distribution in the Google dataset 

 

In this work, we present three data structures that exploit 
the properties to support efficient Top-p completion queries 
with different space/time/complexity trade-off. 

Completion Tree: A compact data structure based on 

compressed compacted tree, where the children of each 

node are ordered by the highest score among their 

respective descendants. By storing the max score at each 

node, we can efficiently enumerate the completions of a 

string prefix in score order. This data structure uses 

standard compression techniques, such as variable-length 

encoding, to reduce space occupancy.  

RMQ Tree: A generic scheme that can be applied to any 
data structure that bijectively maps a set of strings to 

consecutive integers in lexicographic order, by using a 
Range Minimum Query (RMQ) data structure [13] on the 

sequence of scores to retrieve the Top-p completions. In 

our experiments, we apply the scheme to the lexicographic 
path-decomposed tree of [17].  

Score-Decomposed Tree: A compressed data structure 
derived from the path-decomposed tree of [17], where we 
use a path decomposition based on the maximum descen-
dant score. This path decomposition enables efficient Top-
p completion queries.  

Large scale evaluations on search queries, web URLs, 

and English words demonstrate the effectiveness of the 

proposed approaches. For example, on the Google query 

log with 10M unique qies [1], the Completion Tree 

achieves a size of 120 bits/query (including the scores) 

while requiring an average of only 3:7 s to compute the 

top-10 completion on a simulated workload. In 

comparison, the Score-Decomposed Tree increases the 

completion time to 8:0 s, but further reduces the size to 62 

bits/query. In fact, this is less than 30% of the 

uncompressed data size and within 11% of the gzip'ed size. 

The RMQ Tree obtains a similar space occupancy at 65 

bits/query, but is significantly slower at 33:9 s. 

2. Related Work 

There is a vast literature on ranked retrieval, both in the 

classical and succinct settings. We report here the results 

closest to our work. 

Using classical data structures, various studies have 

examined the task of word/phrase completion [7, 26, 24, 

25, 30, 36], though most do not consider datasets of more 

than a million strings or explore efficient algorithms on 

compressed data structures. In [24], Li et al. pre compute 

and materialize the Top-p completions of each possible 

word prefix and store them with each internal node of a 

tree. This requires a pre-determined k and is space 

inefficient. Church et al. employ a kd-tree style suffix array 

that alternates the sorting order of nodes between 

lexicographic and score order at each level [7]. However, 

the lookup time is in the worst case O( n) and has 

empirical performance in milliseconds. Recently, Matani 

[26] describes an index similar in principle to the proposed 

RMQ Tree structure in Section 5, but uses a suboptimal 

data structure to perform RMQ. Although the system 

achieves sub-millisecond performance, both this and the 

previous work require storing the original string set in 

addition to the index. 

From a theoretical point of view, Bialynicka-Birula and 

Grossi [4] introduce the notion of rank-sensitive data 

structures, and present a generic framework to support 

ranked retrieval in range-reporting data structures, such as 

suffix trees and trees. However, the space overhead is super 

linear, which makes it impractical for our purposes. 

As the strings are often highly compressible, we would 

like data structures that approach the theoretic lower bound 

in terms of space. Succinct data structures use space that is 

the information-theoretically optimal number of bits 

required to enco vde the input plus second-order terms, 

while supporting operations in time equal or close to that 

of the best known classical data structures [20, 28, 3, 33]. 

Recent advances have yielded many implementations of 

string dictionaries based on succinct data structure 

primitives [17, 6], without scores. 

Hon et al. [19] use a combination of compressed suffix 

arrays [18, 12] and RMQ data structures to answer Top-p 
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document retrieval queries, which ask for the k highest-

scored documents that contain the queried pattern as a 

substring, in compressed space. While this is strictly more 

powerful than Top-p completion, as shown in [6], string 

dictionaries based on compressed suffix arrays are 

significantly slower than prefix-based data structures such 

as front-coding, which in turn is about as fast as 

compressed trees [17]. The RMQ Tree of Section 5 uses a 

similar approach as [19], but is based on a tree instead of a 

suffix array. As we will discuss in Section 8.4, speed is 

crucial when implementing more sophisticated algorithms, 

such as fuzzy completion, on top of the core Top-p 

completion data structures. 

 

3.  Preliminaries   
 

In this section, we briefly describe some of the data 

struc-tures and primitives used in this paper. For additional 

details on the design and implementation of these 

primitives, please refer to the cited references. 

String Dictionaries - A string dictionary is a data 

structure that maps a prefix-free set S of strings drawn 

from an alphabet bijectively into [0; jSj), where prefix-free 

means that no string in the set is a prefix of another string 

in the set; this can be guaranteed, for example, by 

appending a special terminating null character to every 

string. We call  Lookup the function that maps a string to 

its index, and the inverse function Access, i.e. 

Access(Lookup(s)) = s for all s € S. Lookup(s) returns ? if 

s is not in S. A popular way of implementing a string 

dictionary is by using a tree data structure [14], possibly 

compacted, where each chain of edges without branches is 

collapsed into a single edge. 

Priority queues - A priority queue Q maintains a set 

under operations Push(Q; v), which adds the element v to 

Q; and Pop(Q), which returns the minimum element in Q 

according to a given total ordering on the values, and 

removes it from the set. To implement priority queues, we 

use a classical bi-nary heap [21]. While alternative 

solutions, such as Fibonacci heaps and pairing heaps, have 

O(1) amortized insertion cost, they are often slower than 

binary heaps in practice. 

Bitvectors with Rank and Select - Given a bitvector X 

with n bits, we can define the following operations: 

Rankb(i) returns the number of occurrences of bit value b 

∈{0,1} in X in the range [0,i). Selectb(i) returns the 

position of the i-th occurrence of bit value b in X. Note that 

Rankb(Selectb(i)) = i. These operations can be supported 

in constant time by adding o(n) bits of redundancy to the 

bitvector [8, 20]. In our implementations we use the rank9 

data structure [37] and a variation of the darray [31] when 

only Select is needed. 

  Balanced parentheses (BP) - In a sequence of n 

balanced parentheses, each open parenthesis ( is paired 

with its mate close parenthesis ). Operations FindClose 

and FindOpen find the position of the mate of an open and 

close parenthesis, respectively. The sequence can be 

encoded as a bitvector,  where 1 represents ( and 0 

represents ). The difference between the number of open 

and close parentheses in the range [0,i) is called the excess 

at i. Note that Excess(i) = 2Rank((i)−i. It is possible to 

support the above operations in constant time with a data 

structure that takes o(n) bits [20, 28, 2, 33]. In our 

implementation we use the Range-Min tree [17], a 

variation of the Range-Min-Max tree [2, 33] 

  DFUDS representation - The DFUDS (depth-first unary 

degree sequence) representation [3] maps a tree with t 

nodes to a BP sequence of 2t bits; several traversal 

operations can be implemented with a combination of 

Rank, Select, FindClose, and FindOpen operations. 

  Range Minimum Queries (RMQ) - Given an array A of 

n values, the operation RMQ(i; j) returns the position of 

the minimum value of A in the range [i; j], according to a 

given total ordering of the values (in case of ties, the 

leftmost value is chosen). RMQ can be supported in 

constant time by pre-computing the Cartesian tree of A, 

which can be encoded using BP into 2n + o(n) bits [13]. In 

our implementation we use this data structure with a slight 

variation in the RMQ algorithm, described in more detail 

in Appendix A. 

  Implementation details - In implementing the succinct 

data structures described above, we are mostly concerned 

with the actual speed and space of the data structures we 

consider, rather than theoretical optimality. For this reason, 

although constant-time implementations of many succinct 

primitives are available, we often prefer logarithmic-time 

versions. As shown in several papers [31, 37, 2, 17], such 

implementations are actually faster and smaller than their 

constant-time counterparts. For this reason, when reporting 

time complexities, we will ignore the logarithmic factors 

introduced by succinct operations, treating them as 

constant-timein this case we will use the O notation to 

avoid ambiguity. Our implementations of these structures 

are freely available as part of the Succinct C++ library [34]. 

 

4. Completion Tree 

 
A tree, or prefix tree, is a tree data structure that 

encodes a set of strings, represented by concatenating the 

characters of the edges along the path from the root node 

to each corresponding leaf. We collapse common prefixes 

such that each string prefix corresponds to a unique path. 

Whereas each edge represents a single character in the 

simple tree, a compacted tree, also known as a Patricia 

tree or radix tree, allows a sequence of characters to be 

associated with each edge such that no node can have a 

single child (except for the root node in degenerate 

cases). 
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To encode the score associated with each string, we 

assign to each leaf node the score of the string it 

represents. To support efficient Top-p completion, we 

further assign to each intermediate node the maximum 

score among its descendant leaf nodes. Note that by 

construction, the score of each non-leaf node is simply 

the maximum score among its children, as exemplified in 

Figure 3. As each node score now represents the largest 

score among all strings starting with the prefix 

corresponding to the node, we can apply it as an exact 

heuristic function in a variation of the A* search 

algorithm [32] to find the best completion path from a 

node representing the prefix. Specially, we first find the 

locus node, the highest node in the tree that matches or 

extends the prefix string, and insert it into a priority 

queue, if found. Iteratively, pop the node with the largest 

score. If it is a leaf node, add the string and score 

corresponding to the node to the list of completions. 

Otherwise, iteratively insert its children to the queue until 

k completions have been found or the priority queue is 

empty. 

 
Fig.3: Compacted tree with max scores in each node 

 

The worst-case time complexity of this algorithm is 

O(|Σ||p|+ |Σ|kllog|Σ|kl),where Σ is the alphabet from which 

the strings are composed, p is the input string prefix, k is 

the number of requested completions, and l is the average 

length of the completions returned excluding the common 

prefix p. Specifically, we need to examine up top nodes 

with up to|Σ| children each to find the locus node. We may 

encounter and expand kl nodes on the way to the leaf nodes 

corresponding to Top-p completions. As the algorithm 

inserts all children of each expanded node to the priority 

queue, we add up to |Σ|kl nodes to the binary heap, 

contributing an additional O(|Σ|kllog|Σ|kl) term. 

Instead of inserting all children of each expanded node to 

the priority queue, if we were to sort the children by order 

of decreasing score, we only need to add the first child and 

the next sibling, if any, of each expanded node. 

Conceptually, we can view this as adding a sorted iterator 

to the priority queue. Whenever we remove an iterator from 

the queue, we return the first element and insert the 

remainder of the iterator back into the queue. With this 

change, the time complexity to find the Top-p completions 

reduces to O(|Σ||p|+ kllogkl) as we insert a maximum of 2 

nodes for each node expanded during the search algorithm. 

In practice, sorting the children by decreasing score also 

reduces the number of comparisons needed to find the locus 

node. A summary of the Top-p completion algorithm on the 

Completion Tree data structure is presented in Algorithm 1. 

 

Algorithm 1 Top-p completion with Completion Tree. 

 

Input: Completion Tree T , prefix p, and k 0 

Output: List c of Top-p completions of p 

1 Q Empty priority queue 

2 c Empty list 

3 n FindLocus(T , p) 

4 if n is not null then 

5 Push(Q; (Score(n); n))  

6 while Q is not empty do 

7 r; n   Pop(Q)  

8 if n is a leaf node then  

9 s   String corresponding to n  

10 Append (s; r) to result list c  

11 if jcj = k then return c  

12 else  

13 fn; nn   First child of n, next sibling of n  

14 Push(Q; (Score(fn); fn))  

15 if nn is not null then Push(Q; (Score(nn); nn))  

16 return c  

 

4.1 Compressed Encoding  

 

In addition to improving the theoretical time complexity, 

improving the locality of memory access also plays a 

significant role in improving the practical running time, as 

accessing random data from RAM and hard drive can be 

100 and 10M times slower than from the CPU cache, 

respectively, easily trumping any improvements in time 

complexity. For example, to improve memory locality 

when finding the locus node, we store each group of child 

nodes consecutively such that accessing the next sibling is 

less likely to incur a cache miss. However, instead of 

writing each group of sibling nodes in level order, we write 

the encodings of each group of tree node in depth first 

search (DFS) order. As each internal node is assigned the 

maximum score of its children and the children are sorted 

by decreasing score, iteratively following the first child is 

guaranteed to reach a leaf node matching the score of an 

internal node. Thus, by writing the nodes in depth- firrst 

order, we typically incur only one cache miss per 

completion, resulting in significant speedup over other 

arrangements. 

For each node, we encode the character sequence 

associated with its incoming edge, its score, whether it is 

the last sibling, and an offset pointer to its first child, if 

any. Note that if the node has a next sibling, it is simply the 

next node. Furthermore, we can use a special value of 0 as 

the first child offset for leaf nodes. Assuming 4-byte scores 
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and pointers, a naive encoding would require (l + 1) + 4 + 1 

+ 4 = l + 10 bytes, where l is the length of the character 

sequence. 

One way to reduce the size of each node is to apply a 

variable-byte encoding to scores and o sets. However, as 

each group of child nodes are sorted by decreasing order 

and we traverse the children sequentially, we can first 

perform delta encoding by storing only the score 

difference between the current node and its previous 

sibling. As the first child shares the same score as its 

parent and is always traversed from its parent node, we can 

simply store a differential score of 0. Similarly, we 

observe that the first child offset for siblings can only 

increase. Thus, we can apply the same delta encoding 

techniques to derive the first child offset of a node from its 

previous siblings. To find the first child offset for the first 

sibling, we can traverse all the remaining siblings and 

return the next node, as each set of sibling nodes are stored 

in depth first order. However, as the number of siblings 

may be large, we simply store the difference in offset 

between the first child and the first sibling node. Note that 

we still encode leaf nodes with a first child offset of 0. 

With delta encoding, we significantly reduce the values 

of the node scores and first child offsets. While many 

variable-byte encoding schemes exist, we choose to apply 

an approach where we encode the size of each value in a 

header block. As smaller values, including 0, are much 

more frequent than larger values due to the power law 

distribution of scores and the depth-first ordering of the 

nodes, we choose to allocate two bits in the header to 

represent values encoded with 0, 1, 2, or 4 bytes.
1
 We 

further allocate another bit in the header to indicate if the 

node is the last sibling. Finally, if we limit the maximum 

number of characters that we can store with each node to 7 

by adjusting how the tree is compacted, we can store the 

length of the character sequence in the remaining 3 bits of a 

1 byte header. Figure 4 shows the binary Completion Tree 

encoding of the example from Figure 3. 

 
Fig.4: Binary Completion Tree encoding 

 
4.2  Implementation Details 

 
As the tree nodes are stored in DFS order, it is possible 

to reconstruct the string corresponding to a completion leaf 

node by starting from the root node and iterative finding 

the child whose subtree node offset range includes the 

target leaf node. However, this is an expensive O(j jd) 

operation, where d is the depth of the leaf node. Instead, we 

can significantly reduce the cost of returning the Top-p 

completion strings through additional book keeping in the 

search algorithm. Specifically, we store the nodes to be 

inserted into the priority queue in an array, along with the 

index of its parent node in the array. By modifying the 

priority queue to access nodes through their corresponding 

array indices, we can retrieve the path from each 

completion node to the locus node by following the parent 

indices. Thus, we can efficiently construct the completion 

string in time O(d) by concatenating the original prefix 

string with the character sequences encountered along the 

reverse path. 

To further improve the running time of the algorithm, we 

employ a few bit manipulation techniques that take 

advantage of our particular encoding scheme. With 

standard variable-byte encoding [38], we need to read 

multiple bytes to determine the size and decode the value. 

But by storing the size of the variable-byte value in a 2-bit 

code, we can determine the size ` by looking up the code c 

in a small array: ` sizeFromCode[c]. Furthermore, we can 

decode the value v by reading a 64-bit integer from the 

starting position p and applying a mask indexed by the size 

code c to zero out the extra bytes: v ReadInt64(p) & 

codeMask[c].
2
 

With a direct implementation, a significant amount of 

time is spent on matching strings in the prefix and 

constructing the completion string. In the compressed 

encoding of the Completion Tree, each tree node 

represents at most 7 characters. Thus, we can apply a 

similar masking technique to compare the first  characters 

of two strings p and q: isMatch (ReadInt64(p) & 

strMask[`]) = (ReadInt64(q) & strMask[`]). When 

constructing the completion string, by over-allocating the 

string buffer that stores the completion string, we can copy 

8 bytes from the node character sequence to the insertion 

position in one instruction and advance the insertion point 

by the desired length. By replacing several unpredictable 

conditional branching instructions with a few simple bit 

operations, these optimizations significantly improve the 

performance of the runtime algorithm. 

 

5. RMQ Tree 
 

In this section, we describe a simple scheme to augment 

any sorted string dictionary data structure with an RMQ 

data structure, in order to support Top-p completion. 

As shown in Figure 5, if the string set S is represented 

with a tree, the set Sp of strings prefixed by p is a subtree. 

Hence, if the scores are arranged in DFS order within an 

array R, the scores of Sp are those in an interval R[a; b]. 
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This is true in general for any string dictionary data 

structure that maps the strings in S to [0; jSj) in 

lexicographic order. We call Prefix Range(p) the operation 

that, given p, returns the pair (a; b), or ? if no string 

matches the pre x. 

 
Fig. 5: The scores of the strings 

 

  Figure 5: The scores of the strings prefixed by p 

correspond to the interval [a; b] in the scores vector R. To 

enumerate the completions of p in ranked order, we em-

ploy a standard recursive technique, used for example in 

[29, 19]. We build an RMQ data structure on top of R 

using an inverted ordering, i.e. the minimum is the highest 

score. The index of the first completion is then i = RMQ(a; 

b). Now the index of the second completion is the one with 

highest score among RMQ(a; i 1) and RMQ(i + 1; b), 

which splits again either [a; i 1] or [i + 1; b] into two 

subintervals. In general, the index of the next completion is 

the highest scored RMQ among all the intervals obtained 

with this recursive splitting. By maintaining the intervals in 

a priority queue ordered by score, it is hence possible to 

find the Top-p completion indices~in O(k log k). We can 

then perform k Access operations on the dictionary to 

retrieve the strings. The pseudo-code is shown in 

Algorithm 2. 

Algorithm 2 Top-p completion with RMQ Tree. 

 
Input: Tree T , scores vector R, pre x p, and k 0 

Output: List c of Top-p completions of p 

1 Q Empty priority queue 

2 c Empty list 

3 found, a; b Prefix Range(T ; p) 

4 if found then 

5 i   RMQR(a; b)  

6 Push(Q; (R[i]; i; a; b))   

7 while Q is not empty do  

8 r; i; a; b Pop(Q) 

9 S AccessT (i) 

10 Append (s; r) to result list c  

11 if jcj = k then return c  

12 if i > a then  

13 j   RMQR(a; i  1)  

14 Push(Q; (R[j]; j; a; i  1))  

15 if i < b then  

16 j   RMQR(i + 1; b)  

17 Push(Q; (R[j]; j; i + 1; b))  

18   return c  

 

The space overhead of this data structure, beyond the 

space needed to store the tree and the scores, is just the 

space needed for the RMQ data structure, which is 2n + 

o(n) bits, where n = jSj. If the tree can answer Prefix 

Range in time TP and Access in time TA, the total time to 

retrieve the Top-p completions is O(TP + k(TA + log k)). 

The advantages of this scheme are its simplicity and 

modu-larity, since it is possible to re-use an existing 

dictionary data structure without any significant 

modification. In fact, in our experiments we use the 

lexicographic compressed tree of [17]. The only change 

we needed to make was to implement the operation 

PrefixRange. On the other hand, as we will see in Section 

8, this comes at the cost of significantly worse 

performance than the two other data structures, which are 

specifically designed for the task of Top-p completion. 

 

6. Score-Decomposed Tree 
 

In this section, we introduce a compressed tree data 

structure specifically tailored to solve the Top-p 

completion problem. The structure is based on the succinct 

path-decomposed trees described in [17], but with a 

different path decomposition that takes into account the 

scores. Path decompositions. Let T be the tree built on the 

strings of the scored string set S. A path decomposition of 

T is a tree T 
c
 whose nodes correspond to node-to-leaf 

paths in T . The tree is built by first choosing a root-to-leaf 

path in T and associating it with the root node u of T 
c
; the 

children of u are defined recursively as the path 

decompositions of the subtrees hanging o the path , and 

their edges are labeled with the labels of the edges from the 

path to the subtrees. See Figure 6 for an example. 

Note that while each string s in S corresponds to a root-

to-leaf path in T , in T 
c
 it corresponds to a root-to-node 

path. Specifically, each leaf ` in T is chosen at some point 

in the construction as the decomposition path of a subtree, 

which becomes a node u in T 
c
; the path from u to u in T 

c
 

corresponds to the root-to-leaf path of ` in T . For the sake 

of simplicity we will say that s corresponds to the node u. 
 

 
Fig.6: On the left, tree T with the decomposition path 

highlighted. On the right, root node u in T 
c
 and its 

encoding (spaces are for clarity only). In this example v6 is 

arranged after v5 because r5 > r6. 
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Max-score path decomposition - A path decomposition 

is completely defined by the strategy used to choose the 

path and order the subtrees hanging off as children of the 

root u . Since each string corresponds to a leaf in T , we 

can associate its score with the corresponding leaf. We 

define the max-score path decomposition as follows. We 

choose path as the one to the leaf with the highest score 

(ties are broken arbitrarily). The subtrees are ordered 

bottom-to-top, while subtrees at the same level are 

arranged in decreasing order of score (the score of a 

subtree is defined as the highest score in the subtree). 

To enable scored queries, we need to augment the data 

structure to store the scores. Following the notation of 

Figure 6, let u be the root node of T 
c
 and v1; : : : ; vd be the 

nodes hanging o the path . We call ri the highest score in 

the subtree rooted at vi (if vi is a leaf, ri is just its 

corresponding score). We add ri to the label of the edge 

leading to the corresponding child, such that the label 

becomes the pair (bi; ri). 

Succinct tree representation - To represent the Score-

Decomposed Tree, we use the same encoding described in 

[17], which we briefly summarize here. For each node u in 

T 
c
 we build three sequences Lu, BPu, and Bu. Figure 6 

shows the encoding of the root node u ; the other nodes are 

encoded recursively. Lu contains the concatenation of the 

node and edge labels along the path , interleaved with 

special characters 1; 2; : : : that indicate how many 

subtrees branch of that point in the path . We call the 

positions of these special characters branching points. BPu 

contains one open parenthesis for each child of u , 

followed by a single close parenthesis. Bu contains the 

sequence of the characters bi branching o the path in 

reverse order. The sequences for each node are 

concatenated in DFS order into the three sequences L, BP, 

and B. In particular, after prepending an open parenthesis, 

BP is the DFUDS representation of the topology of the 

path-decomposed tree. Note that the branching characters 

bi are in one-to-one correspondence with the open 

parentheses in BP, which in turn correspond to the nodes 

of T 
c
. In addition, we need to store the scores in the edges 

along with the branching characters. We follow the same 

strategy used for the branching characters: concatenate the 

ri's in reverse order into a sequence Ru , and then 

concatenate the sequences Ru for each node u into a 

sequence R in DFS order. Finally, append the root score to 

R. 

The advantage of storing BP, B, L, and R separately is 

that they can be compressed independently with 

specialized data structures, provided that they support the 

operations needed by the traversal algorithms. Specifically, 

BP and B are stored explicitly as a balanced parentheses 

structure and character array, respectively. We compress 

the sequence of labels L using a variant of RePair [22] that 

supports scanning each label in constant-time per character 

[17]. The sequence R is compressed using the data 

structure described in Section 7. 

 
Fig.7: Score-Decomposed Tree example and its encoding 

 

Top-p completions enumeration - The operations 

Lookup and Access [17] do not need any modi cation, as 

they do not depend on the particular path decomposition 

strategy used. We now describe how to support Top-p 

completion queries. Because of the max-score 

decomposition strategy, the high-est score in each subtree 

is exactly the score of the decompo sition path for that 

subtree. Hence if ri is the highest score of the subtree 

rooted in vi, and ui is the node in T 
c
 corresponding to that 

subtree, then ri is the score of the string corresponding to ui. 

This implies that for each (s; r) in S, if u is the node 

corresponding to s, then r is stored in the incoming edge of 

u, except when u is the root u , whose score is stored 

separately. Anot her immediate consequence of the 

decomposition is that the tree has the heap property: the 

score of each node is less or equal to the score of its parent. 

We exploit this property to retrieve the Top-p 

completions. First, we follow the algorithm of the Lookup 

operation until the pre x p is exhausted, leading to the 

locus node u, the highest node whose corresponding string 

contains p. This 
~
 j jj j takes time O( p ). By construction, 

this is also the highest scored completion of p, so we can 

immediately report it. To nd the next completions, we note 

that the prefix p ends at some position i in the label Lu. 

Thus, all the other completions must be in the subtrees 

whose roots are the children of u branching after position i. 

We call the set of such children the seed set, and add them 

into a priority queue. 

To enumerate the completions in sorted order, we extract 

the highest scored node from the priority queue, report the 

string corresponding to it, and add all its children to the 

priority queue. For the algorithm to be correct, we need to 

prove that, at each point in the enumeration, the node 

corresponding to the next completion is in the priority 

queue. This follows from the fact that every node u 

corresponding to a completion must be reached at some 

point, because it is a descendant of the seed set. Suppose 

that u is reported after a lower-scored node u
0
. This means 

that u was not in the priority queue when u
0
 was reported, 
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implying that u is a descendant of u
0
. But this would 

violate the heap property. 

The previous algorithm still has a dependency on the 

number of children in each node, since all of them must be 

placed in the priority queue. With a slight modification in 

the algorithm, this dependency can be avoided. Note that 

in the construction, we sort the children branching of the 

same branching point in decreasing score order. Thus, we 

can delay the insertion of a node into the priority queue 

until after all other higher-scored nodes from the same 

branching point have already been expanded. For each 

node u, the number of branching points in Lu is at most 

jLuj. Hence, we add at most jLu j + 1 nodes to the priority 

queue: 1 for each branching point and the next sibling, if 

any, of node u. Thus, the time to return k completions is 

O(lk log lk) where l is the average length of the 

completions returned minus the prefix length jpj. 

Comparison with Completion Tree - The algorithm de-

scribed above is very similar to Algorithm 1 for the 

Completion Tree. In fact, the Score-Decomposed Tree can 

be seen as a path decomposition of the Completion Tree, 

and the previous algorithm as a simulation of Algorithm 1 

on the transformed tree. However there are two significant 

differences. First, the scores in the Completion Tree along 

the max-score path are, by construction, all the same. Thus, 

they can be written just once. Hence, while the Completion 

Tree stores at least 2n- 1 scores for n strings, the Score-

Decomposed Tree only stores n. Second, after the locus 

node is found, only k 1 nodes need to be visited in order to 

return k completions. In contrast, Completion Tree may 

require visiting up to (kl) nodes. This property makes the 

Score-Decomposed Tree very suitable for succinct 

representations, whose traversal operations are signi cantly 

slower than pointer-based data structures. 

 

7. Score Compression 
 

For both data structures described in Section 5 and 

Section 6, it is necessary to store the array R of scores, and 

perform random access quickly. Further, it is crucial to 

effectively compress the scores: if stored directly as 64 bit 

integers, they would take more than half of the overall 

space. 

As noted in Section 1, many scoring functions (number 

of clicks/impressions, occurrence probability, . . . ) exhibit 

a power law distribution. Under this assumption, encoding 

the scores with -codes [11] (or in general -codes [5]) would 

give nearly optimal compression. However it would not be 

possible to support efficient random access to such arrays. 

Specifically, we experimented with a random-access 

version of -codes: concatenate the binary representations of 

the values of R (without the leading 1) into a bitvector and 

use a second bitvector to delimit their endpoints, which can 

be retrieved using Select1. While this obtained very good 

compression, it came at the cost of a significant slowdown 

in retrieval. 

We use instead a data structure inspired by Frame of 

Reference compression [15], which we call packed-blocks 

array. The scores array of length n is divided into blocks of 

length l; within each block j the scores are encoded with bj 

bits each, where bj is the minimum number of bits 

sufficient to encode each value in the block. The block 

encodings are then concatenated in a bitvector B. To 

retrieve the endpoints of the blocks inside B we employ a 

two-level directory structure: the blocks are grouped into 

super-blocks of size L, and the endpoint of each block is 

stored relative to the beginning of the superblock using 

O(log(Lw)) bits, where w is the size in bits of the largest re 

presentable value. The endpoint of each superblock is 

encoded using O(log(nw)) bits. To retrieve a value, the 

endpoints of its block are retrieved using the directory 

structure; then bj is found by dividing the size of the block 

by l. The overall time complexity is constant. In our 

implementation, we use l = 16, L = 512, 16-bit integers for 

the block endpoints, and 64-bit integers for the super-block 

endpoints. 

In our experiments, the slowdown caused by the packed-

blocks array instead of a plain 64-bits array was basically 

negligible. On the other hand, as we show in Section 8 in 

more detail, we obtain very good compression on the 

scores, down to a few bits per integer. We attribute the 

good compression to the fact that each group of sibling 

scores are arranged in DFS order. As the decomposed tree 

exhibits the heap property, the score of each node upper 

bounds the scores of its descendants. This increases the 

likelihood that adjacent sibling groups have scores with the 

same order of magnitude. Hence, the waste induced by 

using the same number of bits for l consecutive values is 

relatively small. 

 

8. Experimental Analysis 
 

To evaluate the effectiveness of the proposed Top-p 

comple-tion techniques, Completion Tree (CT), Score-

Decomposed Tree (SDT), and baseline RMQ Tree (RT), 

we will compare their effectiveness on the following 

datasets from different application scenarios on an Intel i7-

2640M 2.8GHz processor with 128/512/4096KB of L1/2/3 

cache and 8GB of RAM, compiled with Visual C++ 2012 

running on Windows 8. 

 QueriesP: 10,154,742 unfiltered search queries and their 

associated counts from the Google query log [1]. This 

dataset is representative of the style and frequency of 

queries users may enter into the search box of a search 

engine or large website. 

QueriesQ: More than 400M filtered search queries and 

their click counts from a commercial search engine for 

scalability evaluation.  
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URLs: 18M URL domains and click counts derived from 

the query click log of a commercial search engine, rep-

resenting the scenario of URL completion suggestions in 

web browser address bars. As users generally skip the 

initial URL protocol (eg. http) and often the www domain 

prefix, for each URL, we artificially inject additional 

entrees with the same count to accommodate such 

behavior, for a total of 42M unique scored strings. Unlike 

queries, URLs share a small set of extension suffixes, 

which makes the data more compressible.  

Unigrams: The top 1M words and their probabilities from 

the Microsoft Web N-gram Service (bing-body:apr10) 

[27]. We quantize the probabilities to b1000 ln(p)c. This 

dataset is representative of the lexicons used by mobile 

devices with soft keyboards, which need a large lexicon for 

each language to support predictive text entry and spelling 

correction, but the tight memory resources require a space-

efficient storage.  

In each dataset we subtracted from the scores their mini-

mum, so that the smallest score is 0, without a affecting 

the ordering. The minimum is then added back at query 

time. 

 

8.1 Space  

 

We evaluate the compactness of the data structures by 

reporting in Table 1 the average number of bits per string 

(including score). For comparison, we also report the size 

of the original uncompressed text le (Raw) and the gzip 

compressed binary (GZip). Across the 4 datasets, the three 

presented techniques achieve an average compression ratio 

of between 29%  and 51%, with SDT consistently having 

the smallest size. In fact, its size is only 3% larger than that 

achieved by gzip compression on average, and is actually 

10% smaller on the Unigrams datatset. 

 
Table 1: Data structure sizes in bits per string 

Dataset Raw GZip CT SDT RT  

       

QueriesP 

 

54.3 119.5 62.5 66.5 

 

208.8  

QueriesQ 238.6 58.9 113.0 60.2 63.4  

URLs 238.7 64.7 140.9 68.6 61.0  

Unigrams 114.3 44.2 49.3 39.8 42.1  

       

 

To better understand how the space is used, we present 

in Figure 8 the storage breakdown of each of the 

techniques on QueriesA. For CT, 70% of the space is used 

to store the uncompressed character sequences. 

Compressing the node character sequences with RePair 

[22] can further reduce the size, but will incur some 

sacrifice in speed. With delta en-coding, storing the scores, 

including the 2 bit header, takes only 4.0 and 9.6 bits per 

node and string, respectively. In comparison, standard 

variable-byte encoding with a single continuation bit [38] 

requires at least 8 bits per node. Simi-larly, we utilize an 

average of only 16.4 bits per string in the dataset to encode 

the tree structure. As reference, it would have required 24 

bits just to encode the index of a string. 

For SDT, nearly 90% of the space is dedicated to storing 

the compressed labels and branching characters. On 

average, each score takes 4.1 bits, less than half of CT; 

while maintaining the tree structure via BP requires only 

2.7 bits per string. RT behaves similarly except each score 

takes 4.9 bits as the child nodes are sorted 

lexicographically rather than by score. In addition, it 

requires a Cartesian tree to perform Range Minimum 

Queries, which takes a further 2.7 bits per string. 

 
Fig.8: Data structure size breakdowns 

 

8.2   Time 

 

To evaluate the runtime performance of the proposed 

data structures, we synthesize a sequence of completion 

requests to simulate an actual server workload. 

Specifically, we first sample 1M queries in random order 

from the dataset according to the normalized scores. 

Assuming that user queries arrive according to a Poisson 

process, we can model the inter-arrival time of each query 

using an exponential distribution. We can control the 

average queries per second (QPS) by adjusting the 

parameter of the exponential distribution. For simplicity, 

we assume that each subsequent keystroke arrives 0.3 

seconds apart, corresponding to an average typing speed of 

40 word per minutes. Users will continue to enter 

additional keys until the target query appears as the top 

suggestion, or until the query has been fully entered. Note 

that with higher QPS, requests from different queries are 

more likely to overlap, leading to more cache misses. 

In Table 2, we present the mean time to compute the 

top-10 completions, averaged over 10 runs. Overall, CT 

achieves the best performance, about twice as fast as SDT. 

While much of the differences can be attributed to SDT's 

use of succinct operations for tree traversal and Re pair 

decoding of label sequence L, CT's better memory locality, 

where all node information are stored together, still plays 

an important part. For instance, we see that when the nodes 

are not arranged for locality, as is the case for RT, the 

performance is extremely poor. Similarly, as the requests 

corresponding to higher QPS exhibit less overlap in 

memory access, the performance degrades by an average 

of 10% for CT and 21% for SDT. As the prefixes used by 
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the two workloads differ only in order, the performance 

gap is due entirely to the effect of CPU cache, where CT 

shines. To simulate a moderate workload, we use 1K QPS 

in the remaining analyses. 
 

Table 2: Average time per top-10 completion query in s 

 
 

To better understand the performance differences 

between the techniques, we break down the total time to 

compute the top-10 completions on QueriesA into the time 

spent finding the locus node and computing each 

successive completion. As shown in Figure 9, CT using 

pointer arithmetic is significantly faster than data structures 

using balanced parentheses for traversal, especially in 

finding the initial locus node. The-oretically, the cost of 

retrieving each additional completion increases 

logarithmically. But in practice, the incremental cost for 

both CT and SDT remains mostly constant (not shown), as 

it is dominated by memory access time, with decreasing 

probability of cache miss for each additional completion. In 

fact, for RT, it actually takes less time to compute each 

additional completion. Furthermore, although we are also 

returning the completion string, each completion in SDT is 

about twice as fast as a random Access operation. CT has 

an even larger ratio due to its less efficient Access 

operation. Thus, by integrating string construction into the 

completion algorithm, we reduce the overall time required 

to enumerate the Top-p completions. 
 

 
Fig.9: Completion time breakdowns 

 

In terms of build time, CT, SDT, and RT with 

unoptimized code currently take an average of 1.8, 7.8, and 

7.7 s per string in QueriesA, respectively, with RePair 

compression taking up 73% of the time for the two 

succinct trees. All algorithms use memory linear to the size 

of the binary output. 

 

8.3 Scalability  

 

To assess the scalability of the data structures, we 

compare their performance on different size subsets of the 

QueriesB dataset. Specifically, to mimic practical scenarios 

where we have a limited memory budget and can only 

afford to serve the most popular queries, we will generate 

these subsets by taking the top-N distinct queries in 

decreasing score order. Figure 10 plots the change in 

average bytes per query as we increase the number of 

queries. Overall, we see that lower count tail queries are 

longer and require more space across all techniques, likely 

due to the different characteristics exhibited by queries 

with only a few counts. While SDT requires more space 

than CT below 100 queries due to its large sublinear 

overhead, its size continues to fall with increasing number 

of queries and actually becomes smaller than GZip on a 

wide range of dataset sizes. 

We present in Figure 11 the effect the number of queries 

has on the average time per completion for top-10 

completion requests. We use the synthesized workload 

based on the full QueriesB dataset to best approximate real 

world usage scenar-ios where users enter prefixes without 

knowing what queries the system can complete. Thus, both 

the average number of completions and average 

completion length increase with the dataset size.  

 

 
Fig.10: Data structure size vs. dataset size 

 

 
Fig.11: Average time per completion vs. dataset size 

 

As shown, the average time per completion for CT 

increases very slowly, due to increasing completion length 

and more cache misses. It is higher for smaller datasets as 

the we have fewer completions to distribute the cost of 

Find-Locus over. As SDT accesses more lines of CPU 

cache per completion, it performs worse than CT, with 

increasing time ratio. RT further suffers from lack of 
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memory locality among the top completions which 

magnifies the e ect of cache miss. 
 

8.4   Discussions 

 

In practical scenarios, auto-completion needs to support 

not only exact prefix matches, but also inexact matches due 

to differences in casing, accents, or spelling. One way to 

support case and accent insensitive match is to normalize 

both the dataset strings and the input prefix into lowercase 

unaccented characters before computing the completions. 

However, this removes the original casing and accents 

from the completions, which may be important for certain 

languages and scenarios. 

An alternative technique is to apply a fuzzy completion 

algorithm, such as the one described by Duan and Hsu 

[10]. In short, after adding the root node to a priority 

queue, iteratively add the children of the best path to the 

queue, applying a penalty as determined by a weighted 

transformation function if the character sequence of the 

child node does not match the input prefix. Once a path 

reaches a leaf node in the tree and has explained all 

characters in the input prefix, return the completion. This 

fuzzy completion algorithm only requires basic tree 

traversal operations and access to the best descendant score 

of each node, which are supported by all of the proposed 

tree data structures. As this algorithm essentially merges 

the top completions of various spell corrected prefixes, the 

ability to retrieve additional completions efficiently and 

on-demand is critical to meeting target performances on 

web-scale server loads. 

Another common scenario is the need to associate 

additional data with each string entry. For example, to map 

the injected partial URLs from the URLs dataset to their 

canoni-cal forms, as shown in Figure 1b, we can create an 

array that maps the index of each string in the dataset to 

the index of full URL, or a special value if no alteration 

mapping is required. These auxiliary arrays are often 

sparse and can be compressed efficiently using various 

succinct and compressed 

data structures [31]. Although CT only maps each 

completion to a node o set, we can create a small bitvector 

with Rank and Select capabilities to convert between the o 

sets and indices. 

Furthermore, some applications need to retrieve the Top-

p completions according to a dynamic score that depends 

on the prefix and completion. As the static score is usually 

a prominent component of the dynamic score, an 

approximate solution can be obtained by taking the Top-p
0
 

completions with k
0
 > k according to the static score and 

re-ranking the completion list. 

To truly scale to large datasets, we need to build the 

proposed tree structures efficiently. Although we have not 

discussed the build process in detail due to the lack of 

space, we have implemented efficient algorithms that scale 

linearly with the size of the dataset. For CT, we have 

further developed efficient techniques to merge trees with 

additive scores, enabling distributed tree building across 

machines. 

 

9. Conclusion  
 

In this paper, we have presented three data structures to 

address the problem of Top-p completion, each with 

different space/time/complexity trade-offs. Experiments on 

large-scale datasets showed that Completion Tree, based 

on classical data structures, requires roughly double the 

size of Score-Decomposed Tree, based on succinct 

primitives. However, it is about twice as fast. As it turns 

out, organizing the data in a locality-sensitive ordering is 

necessary to the performance gains of these two structures 

over the simpler RMQ Tree. 

For scenarios where memory is scarce, Score-

Decomposed Tree can achieve sizes that are competitive 

with gzip. When throughput dominates the cost, 

Completion Tree can reduce the time for each completion 

to under a microsecond. For most applications, the 

difference of a few microseconds between Completion 

Tree and Score-Decomposed Tree should be negligible. 

However, for algorithms that require numerous tree 

traversals, such as fuzzy completion where we consider a 

large number of locus nodes, the speedup from Completion 

Tree may become significant. 

As handling big data becomes ever more important, 

succinct data structures have the potential to significantly 

reduce the storage requirement of such data while enabling 

efficient operations over it. Although their theoretical 

performance matches their classical counterparts, there is 

still a noticeable gap in practice. It is an interesting open 

question whether such gap can be closed, thus obtaining 

the best of both worlds. 
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