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Abstract— We develop an energy-efficient resource-

allocation scheme with proportional fairness for downlink 

multiuser orthogonal frequency-division multiplexing 

(OFDM) systems with distributed antennas. Our aim is to 

maximize energy efficiency (EE) under the constraints of 

the overall transmit power of each remote access unit 

(RAU), proportional fairness data rates, and bit error rates 

(BERs). Because of the non convex nature of the 

optimization problem, obtaining the optimal solution is 

extremely computationally complex. Therefore, we 

develop a low-complexity suboptimal algorithm, which 

separates subcarrier allocation and power allocation. For 

the low-complexity algorithm, we first allocate subcarriers 

by assuming equal power distribution. Then, by exploiting 

the properties of fractional programming, we transform the 

non convex optimization problem in fractional form into an 

equivalent optimization problem in subtractive form, which 

includes a tractable solution. Next, an optimal energy-

efficient power-allocation algorithm is developed to 

maximize EE while maintaining proportional fairness. 

Through computer simulation, we demonstrate the 

effectiveness of the proposed low-complexity algorithm 

and illustrate the fundamental tradeoff between energy and 

spectral-efficient transmission designs. 

 

Keywords— Distributed Antenna System (DAS), Energy 

Efficiency (EE), Fractional Programming, Proportional 

Fairness, Resource Allocation, Spectral Efficiency (SE). 

1. Introduction 

1.1 Distributed Antenna System 

 The distributed antenna system (DAS) has been 

proposed as a capable candidate for future wireless 

communication systems due to its advantages of increased 

capacity, extended coverage, and improved link reliability 

In the DAS, remote access units (RAUs) are geographically 

separated and are connected to a baseband processing unit 

via optical fibers. Thus, the DAS can decrease access 

distance, transmit power, and co-channel interference, 

which can progress system performance, mainly for those 

mobile stations (MSs) near the edge of a cell. Therefore, 

DAS techniques have been paid intensive attention in the 

standardization of the Third-Generation Partnership Project 

(3GPP) Long-Term Evolution (LTE), LTE-Advanced, and 

IEEE 802.16 Worldwide Interoperability for Microwave 

Access (Wi MAX), where they are also referred to as 

cooperative multiple point techniques On the other hand, 

orthogonal frequency division multiplexing (OFDM) can 

effectively combat multipath fading and has been used in 

or proposed for many wireless communication systems, 

such as 3GPP LTE-Advanced and Wi MAX. In an OFDM 

system, the maximum sum capacity can be achieved by 

first allocating each subcarrier to the user with high 

channel gain and then by adjusting the corresponding 

transmit power through water-filling. 

1.2 Energy Efficiency 

 

 In recent years, energy efficiency (EE) has received 

much more attention due to steadily rising energy 

consumption and environmental concerns It has been 

reported in that information and communication 

technology already contributes to around 2% of the global 

carbon dioxide emissions. Recently, the dramatic growth in 

high-rate multimedia data traffic driven by usage of smart 

Android and iPhone devices, tablets, eBook readers, and 

other wireless devices has been straining the capacity of 

today’s networks and has caused a large amount of energy 

consumption.  

 It has been anticipated that mobile traffic will grow 

further by over 100 times in the next ten years. As a result, 

energy-efficient system design has recently drawn much 

attention in both academic and industrial worlds, and is 

becoming the mainstream for the next-generation of 

wireless communications. Four EE-related trade-offs for 

wireless networks have been revealed .A general EE–

spectral efficiency (SE) trade off framework in the 

downlink OFDM networks has been addressed .EE design 

based on cooperative relaying and cognitive radio has been 

discussed An    optimal energy-efficient covariance matrix 

algorithm for a multiple-input–multiple-output (MIMO) 

broadcast channel has been proposed .Energy-efficient 

power-allocation and mode-selection methods in virtual 

MIMO systems have been proposed .We have compared 

the EE between distributed MIMO (D-MIMO) systems and 

collocated MIMO (C-MIMO) systems and showed that D-

MIMO systems are more energy efficient than C-MIMO 
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systems. We have demonstrated that a trade-off exists 

between EE and SE in a downlink DAS when proportional 

fairness among MSs is considered. However, to the best of 

our knowledge, there is no study about energy-efficient 

resource allocation with proportional fairness among MSs 

in OFDM with a DAS. 

  Here, we exploit the fractional programming method to 

investigate energy-efficient resource allocation with 

proportional fairness over composite fading channels 

consisting of small- and large-scale fading for a downlink 

multiuser OFDM DAS. The optimization objective is to 

maximize EE under the constraints of overall transmit 

power of each RAU, proportional fairness data rates, and 

bit error rates (BER). Because of the non convex nature of 

the optimization problem, obtaining the optimal solution is 

extremely computationally complex. By exploiting the 

properties of fractional programming, we transform the 

non convex optimization problem in fractional form into an 

equivalent optimization problem in subtractive form, 

which include a tractable solution. Then, a low-complexity 

suboptimal algorithm is developed to maximize EE while 

maintaining proportional fairness for the downlink 

multiuser OFDM DAS.   

   In Section II, we first describe the multiuser OFDM 

DAS circuit and fiber optic power consumption models, 

and we then formulate the problem of energy-efficient 

resource-allocation optimization for the downlink 

multiuser OFDM DAS with proportional fairness. In 

Section III, a suboptimal energy-efficient resource-

allocation scheme is developed. Numerical results are 

presented to demonstrate the effectiveness of the proposed 

energy-efficient resource-allocation scheme in Section IV. 

Section V concludes. 

 

2. Energy Efficiency of an Orthogonal 

Frequency-Division Multiplexing Distributed 

Antenna System  
    

  After briefly discussing OFDM DAS and circuit and 

fiber-optic power consumption models, we introduce the 

EE of an OFDM DAS. 

2.1 OFDM DAS Model  

 

 

 

 

 

 

 

 

 

 

Fig.1: Circular layout of the OFDM DAS configuration. 

 We consider the downlink of a multiuser OFDM DAS 

in a single cell with N subcarriers, K MSs, and M 

RAUs; both MSs and RAUs are equipped with a single 

antenna, as shown in Fig. 1. The base station (BS) can 

be regarded as a special RAU and is denoted by RAU 1. 

The regular RAUs are equipped with only up/down 

converters and low-noise amplifiers (LNAs). Each RAU 

is physically connected with BS/RAU 1 via an optical 

fiber. We assume that channel state information (CSI) is 

available at both transmitter and receiver. 

     The base station (BS) can be regarded as a special 

AU and is denoted by RAU 1. The regular RAUs are 

equipped with only up/down converters and low-noise 

amplifiers (LNAs). Each RAU is physically connected 

with BS/RAU 1 via an optical fiber. We assume that 

channel state information (CSI) is available at both 

transmitter and receiver. The SNR of MS k on 

subcarrier n from RAU m can be expressed as                     

           

  
      Where Pk,n,m and hk,n,m denote the transmit power and the composite fading-channel frequency response for MS k on subcarrier n from RAU m, respectively; and σ2 z is the power of the complex additive white Gaussian noise. In this paper, the channel frequency response hk,n,m in (1) is 

modeled as   

 
Where gk, n, m denotes the small-scale fading of a wireless 

channel and is an independent and identically distributed 

complex Gaussian random variable for different k’s, n’s or 

m’s with zero mean and unit variance, and wk,,m denotes 

the large-scale fading and is independent of gk, n, m. The 

large-scale fading can be expressed  

 
Where α is the path-loss exponent and is typically 

between 3 and 5, dk, m denotes the distance from MS k to 

RAU m, c is the median of the mean path gain at reference 

distance dk, m = 1 km, and sk, m is a lognormal shadow 

fading variable, i.e., 10 log10sn, m is a zero-mean Gaussian 

random variable with standard deviation σsh.If continuous-

rate adaptation is used, the overall date rate or the SE of 

MS k can be written as   

  
Where β = −1.5/(ln(5PBER)) is a constant for a specific 

probability of a BER (PBER) requirement  

2.2 Circuit Power Consumption 

   To design energy-efficient communication systems, the 

total power consumption should be included in the 

optimization model. It contains three parts: 1) the power 
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consumption of amplifiers; 2) the circuit power 

consumption by RAUs; and 3) the power consumption by 

the fiber-optic transmission, which can be expressed as 

  

 

 
  The circuit power consumption in the given equation 

includes the power dissipation in the digital-to-analog 

converter, the mixer, the active filters at the transmitter 

side, the frequency synthesizer, the LNAs, the intermediate 

frequency amplifier, the active filters at the receiver side, 

and the analog-to-digital converter. Moreover, the circuit 

power consumption is independent of the actual transmit 

power. 

 

2.3 Circuit Power Consumption 

 
 As in most literature, the EE of an OFDM DAS is 

defined as the ratio of the overall data rate or SE over the 

total power consumption (in bits/J/Hz) i.e., 

 
 Where R is the overall data rate or the SE, and it can be 

written as  

 
As in most literature, the EE of an OFDM DAS is defined 

as the ratio of the overall data rate or SE over the total 

power consumption (in bits/J/Hz) 

 

2.4 EE Optimization 

 

 From (6), the objective of EE optimization for the 

downlink multiuser OFDM DAS with proportional fairness 

can be expressed as 

 

 
 

 Indicates that subcarrier n is assigned to MS k from 

RAU m; otherwise, δk, n,m = 0. Pmax m denotes the 

maximum transmit. 

In our previous work, we exploited a multi criteria 

optimization method to get a Pareto optimal solution of EE. 

In this paper, we will obtain the optimal solution of the EE 

problem according to the fractional programming theory 

different from the EE problem, we take the frequency 

selectivity of wireless channels into consideration in (7), 

which is more practical but is more complex. 

 
3. Energy-Efficient Resource Allocation 

 
 Here, we will investigate the energy-efficient resource-

allocation scheme for an OFDM DAS. 

3.1 Subcarrier Allocation 

 
    The optimization problem in (7) is non convex and 

combinatorial and has nonlinear constraints. It is 

impossible to get a closed-form solution. It is also very 

complicated to obtain a numerical solution. Therefore, we 

focus on the low-complexity and suboptimal solution of 

(7). In this paper, we assume that the proportion of 

subcarriers assigned to each MS is approximately the 

same as their data rates after power allocation, which has 

been confirmed in According to the nature of the 

optimization problem, we will first perform subcarrier 

allocation and then power allocation, as shown in the 

following steps. 

 Number of subcarriers per RAU. According to the 

large scale fading Wk,m in (2), calculate the access 

probability between MS k and RAU m. 

 We first allocate the MSs and subcarriers to each RAU, 

and the remaining N∗ unallocated subcarriers is then 

assigned in a way to maximize the overall SE while 

maintaining rough proportionality by assuming equal 

power allocation among the subcarriers. Table I shows 

how subcarriers are allocated, where K, N,   and Mare 

the sets of MSs, subcarriers, and RAUs, respectively. 

 Table I shows how subcarriers are allocated, where K, 

N, and M are the sets of MSs, subcarriers, and RAUs, 

respectively. 

 Step (b) assigns the unallocated subcarriers and RAUs 

to each MS with high channel gain.  

  Step (c) first finds the MS that has the least SE divided 

by its proportionality constant and then assigns the 

unallocated subcarrier and RAU to each MS with high 

channel gain.  

  Step (d) assigns the remaining N ∗unallocated 

subcarriers to the best MSs, Where in each MS can get at 

most one unassigned subcarriers. 

3.2 Power Allocation for Each RAU 

 

After the MSs and the subcarriers have been determined 

for each RAU,  we  have  the    following  energy - efficient  
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optimization: 

 

 
Table 1: Subcarrier Allocation 

 

 

 
 

is the proportional fairness constants among MSs on 

RAU m. Define a new optimal problem as 

 
p = { pk,n,m for k = 1, 2, . . . , K, n = 1, 2, . . . , N, m = 1, 

2, . . . , M }. 

 

 Let F (ω) = max p h(p, ω) and f (ω) = arg max p h(p, ω). It 

has been proven that problems are equivalent to each 

other if and only if F (ω∗) = 0 and f (ω∗) = p∗.  

That is, for any optimization problem with an objective 

function in fractional form, there always exists an 

equivalent objective function in subtractive form. As a 

result, we only need to focus on the equivalent objective 

function .For k = 1, the optimal solution can be obtained 

by 

 
[x]+ is equal to 0 when x is less than zero; otherwise, it is 

equal to x. For k  >= 2, the optimal solution can be 

 

 
 

And ϑ(i) and η(i) are small positive step sizes for the ith 

iteration. The sub gradient updates of (12) and (13) are 

guaranteed to converge to the optimal λk for k ≥ 1 as long 

as ϑ(i) and η(i) are chosen to be sufficiently small. For 

example, ϑ(i) = 0.1/√i.  

Table II shows the details of the optimal power-

allocation algorithm. 

 
Table 2: Subgradient Power-Allocation Algorithm 
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Table 3: Optimal Energy-Efficient Power-Allocation 

Algorithm 

 

 

 

 

 
  After the optimal solution for (9) is derived, we can 

obtain the optimal energy-efficient power allocation of (8), 

which is described in Table -III. 

Algorithm 1 will converge to the global optimal solution 

for sufficiently small positive step sizes for the ith 

iteration ϑ(i) and η(i), which can be proven in a similar 

method in our previous work .The convergence of 

Algorithm 2 has been proven. 

The low-complexity suboptimal solution developed here 

can be summarized as follows. 

1) Determine the number of subcarriers initially assigned 

to each RAU by the algorithm  

2) Assign the MSs and the subcarriers to each RAU 

proportionally using the algorithm in Table I.  

3) For each RAU, assign the overall power pmax,m for the 

selected subcarriers and MSs to maximize the EE while 

enforcing proportional fairness using the algorithm. 

 
4.  Numerical Results 

 
 Here, the proposed energy-efficient resource-

allocation scheme is evaluated via Monte Carlo 

simulations. In our simulation, the number of RAUs M = 

5 and subcarriers N = 64. Noise power σz2 is − 104 dBm, 

and the maximum power pmax,n is 36 dBm. Cell radius R 

is 1 km, and the system BER requirement is 0.001. 

Circuit power consumption Pc is 40 dBm, and fiber-optic 

power consumption Po is −0.6 dBm. Power amplifier 

efficiency τ = 38%. Path-loss exponent α = 3.7, and the 

standard deviation of the shadow fading is σsh = 8 dB 

[23]. The rate constraints are listed in Table IV. 

 

 

 

 

 Table 4: Rate Constraints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.2: SE and EE versus number of iterations with different 

rate constraints for p= 30 dBm and K = 10. 
 

  For convenience, assume that the cell shape is 

approximated by a circle of radius D. The polar 

coordinates of RAUs relative to the center of the cell are 

denoted as (d, θm), m = 1, 2, . . ,M. We assume that the 

MSs are uniformly distributed in the cell. For the cell with 

five RAUs, the polar coordinates of the RAUs are (0, 0), 

(d, 0), (d, π/2), (d, π), (d, 3π/2) Where d = (3 − √3)D/2. 
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4.1  Convergence of Algorithms 1 and 2 

 Fig. 2 and 3 shows the evolution of Algorithms 1 and 

2 for different rate constraints defined in Table IV, 

respectively. The results in Figs. 2 and 3 are averaged 

over 100 000 channel realizations. In Figs. 2 and 

3,Algorithms 1 and 2 converge to the optimal value 

within 70 and 3 iterations for the maximum transmit 

power of each RAU 
p
max,m = 30 dBm and the number of 

the MS K = 10, respectively. The overall algorithm takes 

around 210 iterations in total to converge. 

 

4.2  SE and EE Versus Different Transmit Power 

   Fig. 4 compares the SE versus the total power of 

RAUs for different rate constraints and resource-

allocation methods. In this case, the SE of the proposed 

energy-efficient resource-allocation scheme is better than 

the equal resource-allocation scheme. In Fig. 4, the gap 

between the proposed energy-efficient resource-allocation 

scheme and the equal resource-allocation scheme is 

becoming smaller when the transmit power is increasing. 

The reason is that the CSI is not very good when the 

transmit power is small, but when the transmit power is 

increasing, the CSI is becoming better. Therefore, the 

performance of the equal resource-allocation scheme is 

close to the proposed energy-efficient resource-allocation 

scheme. As in Fig. 4, when rate constraint index k = 0, the 

SE of the proposed energy-efficient resource-allocation 

scheme is approximately 91.8% higher than the equal 

resource-allocation scheme when the total power of RAU 

is 36 dBm. 

 Above figure compares the EE versus SE for different 

rate constraints and resource-allocation methods. 

Compared with equal resource allocation, the proposed 

energy-efficient resource-allocation scheme outperforms 

the equal resource-allocation scheme in terms of EE. 

When rate constraint index k = 0, the EE of the proposed 

energy-efficient resource-allocation scheme is 

approximately 169.3% higher than the equal resource-

allocation scheme when SE is 5 bit/s/Hz. 

  In Fig., the EE–SE curve shows the existence of a 

saturation point, beyond which the EE no longer increases 

with SE, regardless of how much additional transmit 

power is used. Based on this result, we can design optimal 

energy-efficient networks. On the other hand, we can 

reduce as much power consumption as possible while 

satisfying the given SE requirement. 

  In figures 4 & 5, the low-transmit-power regime, the 

proposed energy efficient resource-allocation scheme that 

achieves the maximum EE also achieves the maximum 

SE. However, in the high-transmit-power regime, no 

solution exists for a OFDM DAS to optimize both SE and 

EE simultaneously. 

 
Fig.3: SE versus total power of RAU with different rate 

constraints for pmax,m = 30 dBm   and K = 10 

 
 

 

 

 

 

 

 

 
 

 

Fig.4: SE versus total power of RAU with different rate 

constraints for pmax,m=30 dBm and K =10 
 

 

 

 

 

 

 

 

 
 

 

 

Fig.5: EE versus SE with different rate constraints and 

transmit power for pmax,m = 30 dBm and K = 10. 
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 Fig. 6: SE and EE versus number of Mss with different 

rate constraints for Pm
max = 30 dBm. 

 

  The SE and EE achieved by the proposed energy-

efficient resource-allocation scheme vary with the data 

rate constraints. This result demonstrates that the 

proportional fairness constraints can explicitly control the 

SE and EE ratios among MSs. Therefore, we can always 

ensure the target data rates and EE for each MS if there is 

sufficient transmit power for RAUs. 

4.3  SE and EE Versus Number of MSs 

Fig.6 shows the EE and SE versus the number of MSs for 

different rate constraints and pmax,m = 30 dBm, respectively. 

Both the EE and SE grow with the number of MSs under 

different rate constraints since the proposed energyefficient 

resource-allocation scheme is able to exploit multiuser 

diversity. 

 

5. Conclusion 

 
  In this paper, we have investigated the optimal energy-

efficient resource-allocation methods for the downlink 

multiuser OFDM DAS with proportional fairness, and 

proposed a suboptimal energy-efficient resource-

allocation scheme to maximize EE. Numerical results 

have shown that the proposed algorithm converges to the 

optimal solution within a small number of iterations and 

demonstrated the tradeoff between EE and SE, which is 

very important for future wireless communication 

systems. 

References 

[1]  X.-H.You, D.-M. Wang, B. Sheng,X.-Q. Gao, X.-S. Zhao, and           

M. Chen “Cooperative distributed antenna systems for          mobile 
communications,” IEEE Wireless Communication.,          vol. 17,  

no. 3, pp. 35–43, Jun. 2010.  

[2]   H .- L.  Zhu, “Performance  comparison  between  distributed         
antenna and microcellular systems,”  IEEE J. Sel. Areas          

Communication., vol. 29, no. 6, pp. 1151–1163, Jun. 2011.  

[3]    H. - L. Zhu,  S.  Karachontzitis,  and   D.  Toumpakaris,  “Low-          
complexity resource allocation and its application to           

distributed antenna systems,” IEEE Wireless           Communication., 

vol. 17, no. 3, pp. 44–50, Jun. 2010. 
[4]  H. Kim,  S.-R. Lee, K.-J.  Lee, and I. Lee, “Transmission           

schemes based on sum rate analysis in distributed antenna           

systems,” IEEE Trans. Wireless Communication., vol. 11,           no. 
3, pp. 1201–1209, Mar. 2012.  

[5]  X.-H. You D.-M. Wang,P.-C. Zhu, and B. Sheng,“Cell edge          

performance of cellular mobile systems,” IEEE J. Sel. Areas          
Communication., vol. 29, no. 6, pp. 1139–1150, Jun. 2011.  

[6]  Z.-K. Shen, J. Andrews, and B. Evans, “Adaptive resource         

allocation in multiuser OFDM systems with proportional rate         

constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp.         

2726–2737, Nov. 2005.  

[7]     G.-W. Miao, N. Himayat, G. Y. Li, and A. Swami, “Cross-        layer 
optimiza-tion for energy-efficient wireless           communications: 

A survey,” J. Wireless Commun. Mobile         Computer., vol. 9, no. 

4, pp. 529–542, Apr. 2009.  
[8]     Z. Hasan,   H.   Boostanimehr,    and   V. K.  Bhargava,    “ Green        

cellular net-works: A survey, some research issues and challenges,” 

IEEE Commun. Surveys Tuts., vol. 13, no. 4, pp.    524–540, 4th 
Quart., 2011.  

 [9]  W. Miao, N. Himayat, G. Y. Li, and S. Talwar, “Distributed 

interference-aware energy-efficient power optimization,” IEEE 
Trans. Wireless Commun., vol. 10, no. 4, pp. 1323–1333, Apr.  

2011.  
[10]  C. Xiong, G. Y. Li, S.-Q. Zhang,Y. Chen, and S.-G. Xu, “Energy- 

and spectral-efficiency tradeoff in downlink OFDMA networks,” 

IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3874–3886, 
Nov. 2011.  

[11]   D.-Q. Feng,C.-Z. Jiang,G. Lim, L. Cimini, G. Feng, and G. Y. Li, “A 

survey of energy-efficient wireless communications,” IEEE 

Communication. Surveys Tuts., vol. 15, no. 1, pp. 167–178, 1st 

Quart., 2012.  

[12]   L. Deng, Y. Rui, P. Cheng, J. Zhang,Q.-T.Zhang, and M.-Q.   Li, “A 
unified energy efficiency and spectral efficiency trade off metric in 

wireless networks,”IEEE Communication. Lett., vol. 17, no. 1, pp. 

55–58, Jan. 2013.  
[13]   G. P.  Fettweis  and  E.  Zimmermann,  “ICT  energy  consumption-

trends and challenges,” in Proc. 11th Int. Symp. WPMC, Sep. 2008, 

pp. 1–4.  
[14]  Cisco Visual Networking Index, Global Mobile Data Traffic Data 

Forecast Update, Cisco Systems, Inc., San Jose, CA, USA, White 

Paper, pp. 2011– 2016, 2012.  
[15]  Y. Chen,S.-Q. Zhang,S.-G. Xu, and G. Y. Li, “Fundamental trade-

offs on green wireless networks,” IEEE Communication. Mag., vol. 

49, no. 6, pp. 30–37, Jun. 2011.  
[16] C.-M. Jiang, Y.Shi, Y. Hou, and S. Kompella, “On optimal   

throughput-energy curve for multi-hop wireless networks,” in Proc. 

IEEE INFOCOM, Apr. 2011, pp. 1341–1349.  
[17] G. Gur and F. Alagoz, “Green wireless communications via           

cogni-tive dimension: An overview,” IEEE Netw., vol. 25, no.           

2, pp. 50–56, Mar./Apr. 2011.  

[18] Y. Wang,W.-J. Xu, K.-W. Yang, and J.-R. Lin, “Optimal             

energy-efficient power allocation for OFDM-based cognitive radio 

networks, “IEEE Commun. Lett., vol. 16, no. 9, pp. 1420–1423, Sep. 
2012.  



Engineering and Scientific International Journal (ESIJ)                                            ISSN 2394-187(Online) 

Volume 2, Issue 2, April - June 2015                ISSN 2394-7179 (Print) 

 

   67 

[19]   S. Althunibat  and  F. Granelli,  “On the  reduction of power loss 
caused by imperfect spectrum sensing in OFDMA-based cognitive 

radio access,” in Proc. IEEE GLOBECOM, 2012, pp. 3383–3387.  

[20]  J. Xu  and  L. Qiu, “Energy efficiency optimization for MIMO 
broadcast channels,” IEEE Trans. Wireless Communication., vol. 12, 

no. 2, pp. 690–701, Feb. 2013.  

[21]  Y. Rui, Q. T. Zhang, L. Deng, P. Cheng, and M.-Q. Li, “Mode 
selection and power optimization for energy efficiency in uplink 

virtual MIMO systems,” IEEE J. Sel. Areas Communication., vol. 

31, no. 5, pp. 926–936, May 2013.  
[22]  C.-L. He, B. Sheng, P.-C. Zhu, D.-M. Wang, and X.-H. You, 

“Energy efficiency comparison between distributed MIMO and co-

located MIMO systems,” Int. J. Communication. Syst., pp. 1–14, 
2012. [Online]. Available: http://onlinelibrary.wiley. 

com/doi/10.1002/dac.2345/pdf. 

[23]   C.-L. He, B. Sheng, P.-C. Zhu, X.-H. You, and G. Y. Li, “Energy- 
and spectral-efficiency tradeoff for distributed antenna systems with  

  propor-tional fairness,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

  pp. 894–902, May 2013.  
[24]   C.-L. He, B. Sheng, P.-C. Zhu, and X.-H. You, “Energy efficiency 

and spectral efficiency tradeoff in downlink distributed antenna systems,” 

IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 153–156, Jun. 2012.  
[25]  L.-S. Ling, T. Wang, Y. Wang, and C. Shi,“Schemes of power 

allocation and antenna port selection in OFDM distributed antenna 

systems,” in Proc. IEEE VTC-Fall, Sep. 2010, pp. 1–5.  
[26]   D.-M. Wang, X.-H. You, J.-Z. Wang, Y. Wang, and X.-Y. Hou, 

“Spectral efficiency of distributed MIMO cellular systems in a 

composite fading channel,” in Proc. IEEE ICC, May 2008, pp. 
1259–1264.  

[27]  X .- X. Qiu and K. Chawla, “On the performance of adaptive 

modulation in cellular systems,” IEEE Trans. Commun., vol. 47, no. 
6, pp. 884–895, Jun. 1999.  

[28]  O. Arnold, F. Richter, G. Fettweis, and O. Blume, “Power consump-

tion modeling of different base station types in heterogeneous 
cellular networks,” in Proc.Future Netw. Mobile Summit, 2010, 

pp.1–8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


