
Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 1

Generating Random Text using Markov Chains

Jatin Dhankhar
#1

, Kavish Bhatia
#2

, Ishan Sharma
#3

1Student, Ramanujan College, University of Delhi, Delhi, India

1dhankhar.jatin@gmail.com, 2kavishbhatia@live.in,
3
ishan05sharma.is@gmail.com

Abstract— Markov Chains are truly fascinating, named

after Andrey Markov, is a random process that undergoes

transitions from one state to another on a state space.

Markov chains even stateless can produce many fascinating

results like weather forecasting, text prediction and even

generation. In this paper we propose a simple Third Order

Markov Chain to meaningful lyrics or even text from a

corpus of data.

Keywords— Markov Chains; Lyrics; Python.

1. Introduction

Markov chain is a stochastic process with the Markov

property. The term "Markov chain" refers to the sequence

of random variables such a process moves through, with

the Markov property defining serial dependence only

between adjacent periods (as in a "chain"). It can thus be

used for describing systems that follow a chain of linked

events, where what happens next depends only on the

current state of the system. Lyrics or text can be thought as

a long chain where probability of a word depends upon the

probability of its predecessor but it’s not quite true.

Sometimes it depends upon more than just it’s predecessor.

Many a times possibility of a word appearing in a sentence

depends upon the context of the sentence. It's the same

technique used spammers to inject real-looking hidden

paragraphs into unsolicited email and post comments in an

attempt to get these messages past spam filters.

2. Methods

 Our overall approach for the project to randomly

generate text involved following steps.

 Grab lyrics for 5 categories by using a scraper written
 in Python.

 Tokenize the data into a set of words.

 Pass tokens to a Third order Markov engine.

 Store the output from the markov engine into a file.

 Fetch the newly created file, tokenize it and process it
 again.

 Store the output of second pass to a file.

 Pluck 25 records per genre to a web app to analyze the
 result.

 Our markov implementation is a simple and naive one.

We first tried to use NLTK and Sci-learn packages but they

were too much overfill for the method. For the markov

chain module we used the Generating pseudo random text

with Markov chains using Python by Shabda Raj of Agiliq

whose algorithm is discussed below.

 Start with two consecutive words from the text. The last
 two words constitute the present state.

 Generating next word is the markov transition.

 To generate the next word, look in the corpus, and find
 which words are present after the given two words.

 Choose one of them randomly.
 For example, "The quick brown fox jumps over the

brown fox who is slow jumps over the brown fox who is

dead”. Following sentence produces given corpus for

internal representation and generation.

(’The’, ’quick’): [’brown’],
(’brown’, ’fox’): [’jumps’, ’who’, ’who’],
(’fox’, ’jumps’): [’over’],

(’fox’, ’who’): [’is’, ’is’],
(’is’, ’slow’): [’jumps’],
(’jumps’, ’over’): [’the’, ’the’],
(’over’, ’the’): [’brown’, ’brown’],
(’quick’, ’brown’): [’fox’],
(’slow’, ’jumps’): [’over’],
(’the’, ’brown’): [’fox’, ’fox’],
(’who’, ’is’): [’slow’, ’dead.’]

3. Results

A first pass with Markov generator produced some

results but most of the lyrics produced looked less random

but jumbled. So we decided to do a second pass and results

looked more funny and random while some were negative.

To analyze which lyrics were better than others we made a

small webapp which contained lyrics for each genre and

had options of either up voting and down voting, to make it

simple we randomly picked a sample size of 25 for each

genre and a total of 125. For the voting purpose we made a

simple AJAX backed source code available at

https://github.com/jatindhankhar/nutty and hosted on

openshift. However, due to very less votes we were unable

to get any insight out of the data.
However there are some interesting results to pull out.

For instance, here is a non-cumulative graph of the

frequency distribution of 30 common words used in

Special Issue of International Journal of Linguistics and Computational Applications ISSN 2394-6393 (Online) ISSN 2394-6385 (Print)

Proceedings of the UGC Sponsored - National Conference on "Recent Statistical Computing Techniques and their Applications”

Department of Statistics and Department of Computer Science, Ramanujan College,University of Delhi, Delhi.

March 11-12, 2016. Published on January 2017

Peer-review under responsibility of Organizing Committee of the Recent Statistical Computing Techniques and their Applications

 2

Bollywood

Fig.1: Frequency distribution | Bollywood | First Pass

Fig.2: Frequency distribution | Bollywood | Second Pass

4. Conclusion

We find that markov chain while simple are not a good

choice to generate text by themselves but if coupled with a

trainer program along with a syntax checker and parser can

generate almost human text, which hopefully can pass a

Turing test too. During our experiment we also found that

longer the text and no of times a text is passed to Markov

generator yields great result as compared to a text which

has done few passes.

References

[1] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural

Language Processing with Python. O’Reilly Media Inc.
[2] Generating pseudo random text with Markov chains using Python

http://agiliq.com/blog/2009/06/ generating-pseudo-random-text-with-

markov-chains-u/
[3] Markov chain - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/ Markov_chain
[4] Markov and You http://blog. codinghorror.com/markov-and-you/
[5] Generating political news using NLTK | GilesThomas.com

http://www.gilesthomas.com/2010/05/ generating-political-news-

using-nltk/
[6] Markov chains for automatic Donald Trump http://filiph.github.io/

markov/

Jatin Dhankhar is a undergrad student at

Ramanujan College, University of Delhi pursuing

B.Tech in Computer Science. His areas of
interest include machine learning, computer

vision and information retrieval.

Kavish Bhatia is a undergrad student at

Ramanujan College, University of Delhi
pursuing B.Tech in Computer Science. His areas

of interests are Robotics, Artificial intelligence,

machine learning.

Ishan Sharma is a undergrad student at

Ramanujan College, University of Delhi
pursuing B.Tech in Computer Science

